
Humanoid Robots: Abarenbou and DaoDan

Jacky Baltes, Sancho McCann, and John Anderson

Autonomous Agent Lab
University of Manitoba
Winnipeg, Manitoba
Canada, R3T 2N2

j.baltes@cs.umanitoba.ca

http://www.cs.umanitoba.ca/~jacky

Abstract. This paper describes our latest humanoid robots Abaren-

bou and DaoDan. Abarenbou is a modification of the commercially
available Kondo KHR-1 humanoid robotic kit. The research goal of Abaren-

bou is the development of an affordable
This kit provides a mechanically sound and affordable platform, but does
not provide facilities for on-board computer vision and other sensors
for active balancing. Thus, it is not suitable as a research platform for
humanoid robotics. To overcome these limitations, we added a pan and
tilt camera mount, a small camera. Processing power is provided by a
Sony Clie NR70V PDA which is responsible for computer vision and
higher level reasoning. The PDA communicates with the robot kit via a
serial line. We developed software to create, store, and play back motion
sequences on the Kondo KHR-1.

1 Introduction

Humanoid robots have always inspired the imagination of robotics researchers
as well as the general public. Up until 2000, the design and construction of a
humanoid robot was very expensive and limited to a few well funded research
labs and companies (e.g., Honda Asimov, Fujitsu HOAP). Starting in about
2001 advances in material sciences, motors, batteries, sensors, and the continuing
increase in processing power available to embedded systems developers has led to
a new generation of affordable small humanoid robots (some examples include:
Pino [7], Manus I [8], Tao-Pie-Pie [2], Roboerectus [9], and Hansa Ram [5]).

These robots cost in the range from $1000.00 to $20,000 USD. Many hobby-
ists have build their own humanoid robots, especially in Asia.

The creation of these humanoid robots also coincided with an increased inter-
est in several high profile research oriented international robotics competitions
(e.g., RoboCup [3] and FIRA [1]). The researchers chose robotic soccer as a
challenge problem for the academic fields of artificial intelligence and robotics.
Robotic soccer requires a large amount of intelligence at various levels of abstrac-
tion (e.g., offensive vs defensive strategy, role assignment, path planning, local-
ization, computer vision, motion control). Robotic soccer is a dynamic real-time

environment with multiple agents and active opponents that try to prevent the
robot from achieving its goal. These competitions allowed researchers to compare
their results to others in a real-world environment. It also meant that robustness,
flexibility, and adaptability became more important since these robots had to
perform for extended periods of time in variable conditions. This is in contrast to
researchers that could previously fine tune their system to the specific conditions
in their laboratory. The inaugural humanoid robotics competition at RoboCup
and at FIRA were held in 2002.

Furthermore, in 2002 hobbyists formed several popular robotics events which
had less of a research emphasis. The most popular example are the televised
Robot Wars (Battle Bots) events where remote controlled wheeled robots with
weapons try to destroy each other. The huge interest in humanoid robotics in
Asia has led to the creation of humanoid robot fighting competitions in Japan
(Japan One) and Korea (K-One). Several of these humanoid robots are now com-
mercially available at a competitive price. Even though the robustness and cost
make these remote controlled fighting robots attractive for humanoid robotics re-
searchers, the robots are not immediately suitable as autonomous robot research
platforms.

The main disadvantages are: (a) these fighting robots do not have sufficient
processing power for on-board vision, and (b) they have few if any sensors (e.g.,
accelerometers, gyroscopes, force sensors) to support dynamic balancing and
feedback control of the walking gait.

This paper describes our work in converting the Kondo KHR-1 humanoid
robot kit from a remote controlled fighting robot into a fully autonomous soccer
playing robot Abarenbou. To keep the cost down, Abarenbou uses a commonly
available personal digital assistant (PDA) with a built in camera as processing
platform for vision and higher level reasoning. We used the Sony Clie NR70V
PDA as the brain of our robot.

The following section describes the hardware of the Kondo KHR-1 robot and
our modifications to the hardware. Section 4 describes the methodology we used
for developing new motions (e.g., walk, turn, and kick). The vision processing
part of our system is described in section 5. Section 6 describes our pragmatic Al
method for localizing the robot in the playing field and mapping the environment
around the robot. The agent architecture is described in Section 7. The paper
concludes with section 8, which also gives directions for future work.

2 Team Members

For the last three years, the Keystone Rescue is an important and integral part
of our research into articial intelligence, computer vision and machine learning.
Various students and staff have contributed to the 2006 Keystone Rescue team
and a comprehensive list would be too long. The following table lists the core
team members of the Keystone Rescue 2006.

Jacky Baltes team leader, hardware John Anderson robot coordination
Sara McGrath vision Terry Liu map generation
Sancho McCann victim identification Shane Yankee path planning

3 Hardware Description

3.1 Abarenbou

The Kondo KHR-1 robot is a humanoid robotics kit with 17 degrees of freedom
(DOF) controlled by servo motors. These include two in each ankle for frontal
and lateral movement of the foot, one in each knee, two at each hip for frontal
and lateral movement of the leg, three in each arm, and one to pan the head.
The KRS-784ICS servo provides 8.7kg/cm at 6.0 V of torque and a maximum
speed of 0.17sec/60◦. These servos are powerful given their cost and were the
main reason that we decided on this robot kit.

The servos are controlled by two simple PIC based micro-controller board.
Each board can control a maximum of 12 different servos; this means that in
theory the Kondo KHR-1 kit can control up to 24 different servos. However,
in practice the number of servos is limited by the maximum current that can
be driven by the controller boards. To reduce the maximum current for the two
boards, the 17 servos of the KHR-1 are distributed equally across the two boards.
The first controller board is responsible for the legs, whereas the upper torso,
arms, and head are controlled by the second controller board.

The two embedded systems are controlled via a shared serial line. The con-
troller boards accept commands at 115200 baud. Commands include setting the
position (i.e., set point for all 17 servos), writing a motion (i.e., a sequence of
positions), as well as reading back positions and motions. The firmware of the
controller boards is limited to 31 motions.

Several additions were made to the standard kit. A pan and tilt camera unit
was constructed using two servo motors and the camera from a Sony Clie NR70V
PDA 1. First, we removed the camera from the Sony Clie NR70V casing. The
camera is connected to the main board via a fragile short ribbon cable. This
means that the camera only has a small range of motion. Therefore, a pan and
tilt unit was constructed out of two micro RC servos in such a way that the link
joint as close as possible to the original position of the camera. The pan and
tilt assembly allows the camera to tilt by +/- 45 degrees and to pan by +/- 70
degrees. The Clie itself was mounted in a bracket attached to the front of the
robot.

The PDA uses a 66 MHz Dragonball CPU for processing and captures images
with a 320x240 resolution. While the PDA does not have as much processing
power as other alternatives, it does have a serial port for communication with
Abarenbou’s control boards. A MAX232 based level changer is used to convert
the voltage from TTL level (PDA) to RS232 level (Abarenbou controller board).
After generating the correct voltage, we were able to send data to the robot, but
were unable to read data from the robot successfully. Upon further investigation,
we discovered that the control circuitry on the robot did not generate 12V.

Fig. 1. The Pan and Tilt Unit of Abarenbou. The servos are mounted upside down to
prevent stress on the thin ribbon cable.

Instead the client software was expected to drive the DTR pin low, and this pin
was connected via a pull down resistor to the transmit pin on the robot. We
generated a 12V signal using the Maxim MAX232 level changer IC in a similar
manner. After this modification, we were able to send and receive data from the
robot reliably.

After these modifications, Abarenbou has a height of 41cm, each foot has
a surface contact area of 41.85cm2, and the center of gravity is at a height of
18.5cm.

3.2 DaoDan

DaoDan is our latest and most sophisticated humanoid robot. It has 17 de-
grees of freedom. DaoDan uses the A1001 AI motors from the Korean company
Megarobotics. These motors are provide about 10 kg/cm torque but have several
features that make them attractive for complex robots such as humanoids.

Firstly, the motors use a TTL level serial protocol which means that they
can be daisy chained. This greatly simplifies the cabling of the robot. Secondly,
the AI motors provide position and torque feedback. This makes it easier to
develop stable walking gaits. We are also currently investigating methods where
this feedback is used to actively control the angle of the upper torso to reduce
the torque on the ankle joints. The torque on the ankle joints is a limiting factor
in the development of walking gaits for humanoid robots, since all but the most
expensive RC servos do not have enough torque to support a robot in the single
support phase. In spite of these advantages, the A1001 AI motors are reasonably
priced at approximately $50.00 CAN. This is in stark contrast to the $150 CAN
or more that other teams spend on the robotis servos or high quality digital
servos from Hitec and Futaba.

DaoDan uses Li-Polymer batteries because of their good power density and
maximum current.

Fig. 2. Abarenbou

Fig. 3. DaoDan

DaoDan is being controlled by a Palm Zire 72 PDA, which has a powerful
arm based processor running at 312Mhz Intel PXA270 processor. It includes 32
MB of RAM (24 MB usable) which is sufficient for most robotics applications.
The PDA has a built-in bluetooth connection and a large 320x200 display which
are useful in debugging.

4 Motion Development

Figure 4 shows the interface of the motion control software that we developed to
control Abarenbou and DaoDan. The interface allows one to move the robot
into a specific position and save this position. The interface also allows one to
set the trim (i.e., offset) for all joints as well as the home position.

A separate window tab is used to combine positions into motions. Each mo-
tion has a cycle time associated with it and each part of a motion has a arrival
time associated with it. Thus, the interface allows the user to easily adjust the
speed of a whole motion or individual parts of the motion. The trajectory of all
joints is shown in the bottom window.

Eight movements were programmed onto the robot: start walking, take step
with right foot, take step with left foot, stop from left walk, stop from right
walk, sideways step left, sideways step right, and kick with right foot.

These movements are then available to be played back as required by any of
our programs running on the PDA.

5 Vision Processing

Abarenbou uses a CMOS camera as the main sensor. The camera is used to
approach objects in the field of view of the robot as well as localization and
mapping.

To be robust enough to deal with the complex environment of robotic soccer,
the vision processing makes little use of colours, but uses a very fast approxi-
mate region segmentation algorithm. First, the algorithms scans the image and
extracts scan line segments (i.e., segments of similar colour) of approximately
the right size. This step is similar to standard region segmentation algorithms.

However, we noticed that implementing a full union-find algorithm was too
slow since it took about 2 secs. per image. Since most objects of interest in
the environment are relatively small, we use a flood fill pixel merge algorithm,
to find the associated region for a scanline. Note that the flood fill algorithms
keeps track of which pixels have previously been visited and thus will visit each
pixel at most once. The returned region is then checked for size (i.e., number of
connected pixels), size of the bounding box, aspect ratio, and compactness. Only
in the final step does the algorithm test whether the average colour of the region
matches the object colour. If any of these tests fail, the object is rejected. Using
only average colours of regions results in robust recognition of the ball and the
goals and takes on average approximately 200ms.

Fig. 4. Interface of our motion development system. The top window shows the de-
velopment of a position, the bottom window shows the combination of these positions
into motions.

An approximation of the relative position of objects is possible by determin-
ing the pan and tilt angles, and then calculating the distance to the centre of the
image. It is assumed that these objects are on the ground plane. The relative
position of an object at the centre of the image will have the closest approxima-
tion, so the camera is centered on important objects such as the ball before a
decision is made as to what action to take next.

Goals are also detected as objects. Each goal is a distinct colour according
to RoboCup rules. If both goal colours are found in one image, the regions of
each goal colour are merged with other regions of the same goal colour. The goal
colour that is present in the largest merged region is considered to be the goal
currently being viewed.

To help the feature based localization method described in the following
section, we use a complex camera calibration based on the Tsai camera calibra-
tion algorithm [6]. This calibration is only done once for each robot. Given this
calibration information, we are able to map points in the image accurately to
their real world coordinates. This is essential since it allows us to determine the
distance and orientation of the ball to a feature point (ball, goal post, line)

Before localization can occur, features must be extracted from the image.
The relevant features for localization on the soccer field are lines, goals, and the
centre circle. We use the lines and the goals to achieve localization.

Every 5th column, the system scans from the bottom of the image towards
the top. If there is a transition from a green pixel to a white pixel, the pixel p

is remembered in a list. The scan continues upward, so there may be more than
one transition pixel in a column.

Next, lines are found by running a gradient guided Hough transform [4]. For
each point pi, a set of adjacent points is determined. Triplets are formed from
these by including one point to the left of the point pi, and one point to the
right of pi. There are several triplets that can be formed this way out of the
neighborhood of adjacent points. Each triplet votes for an unbounded line in the
image. This vote is fuzzified by voting for a small range of slopes through the
point pi.

The peaks in the Hough accumulator space determine the equations of pos-
sible lines. For each peak in the accumulator space, we search along the pixels
determined by the line equation to find start and end points of the lines. This
results in a set of line segments.

The line segments are ordered based on their size. The longest line segment
is assumed to represent the edge of the playing field. Given the distance and
gradient of the line segment, the position and direction of the robot can be
computed.

6 Localization and Mapping

Knowing the position of the ball is important. Its relative position from the
robot is easily determined from an image. However, without knowing the world
position of the ball, the robot would often kick the ball out of bound or even into

its own goal. Actions can not be taken toward kicking the ball until its world
position is known.

Fig. 5. Localizing using a known point, its relative position, and relative orientation of
a line. Image from the robot with highlighted line segments and the calculated position
are shown in the lower image.

Absolute localization of the robot will give absolute localization of the ball.
Absolute localization can be done as long as a point is viewed with a known
world coordinate, and knowing the robot’s world bearing from it. One instance
of this is when a goal post is seen. Once this is accomplished, dead reckoning
can be used with some accuracy for a short time afterward.

7 Agent Architecture

This section will give a brief introduction to the behaviour tree based agent ar-
chitecture used in Abarenbou. The discussion will focus on the state transitions.
More complex features of the agent architecture (e.g., behaviour trees and state
references) are outside of the scope of this paper.

Designing an architecture that is flexible, versatile, and intuitive enough for
an intelligent mobile robot is a difficult problem. This is especially true in the
case of autonomous robots with limited processing capabilities.

Abarenbou uses a behaviour tree to balance the need for deliberate planning
and reactive behaviours. The behaviours themselves are implemented as finite

state machines. As the complexity of the task increases, the implementation of
the state machine becomes more error prone.

We therefore developed a meta language to describe the behaviors in XML.
The specification of the behaviors includes preconditions (enter functions) and
post conditions (exit functions) of the behaviours. An slightly simplified example
of a simple behaviour that scans for a target with increasing sweeps is shown in
Table 1.

<State id="Scan For Target" >

<Enter>

%%v(angle) = 0;

if (previousState == %%State("Target Right Forward"))

{

%%v(newAngle) = 20; /* Turn 20 degrees first */

%%v(angleAdjust) = +10;

}

else

{

%%v(newAngle) = - 20; /* Turn 20 degrees first */

%%v(angleAdjust) = -10;

}

</Enter>

<Process>

if ((%%v(newAngle) >= -190) &&

(%%v(newAngle) <= 190))

{

if (%%v(angle) != %%v(newAngle))

{

turn((%%v(angleAdjust) * TEN_DEGREE) / 10);

%%v(angle) = %%v(angle) + %%v(angleAdjust);

}

else

{

%%v(newAngle) = - %%v(newAngle) - 40;

%%v(angleAdjust) = - %%v(angleAdjust);

}

}

else

{

%%Transition("Random Walk");

}

</Process>

</State>

Table 1. An XML schema for a behaviour that scans for a target by turning right/left
with increasing sweeps

The XML schemas include additional markup to refer to states by name
(%%State("Random Walk") access variables (%%v) and to trigger transitions to
other states (%%Transition).

Behaviours are organized into behaviour trees. Higher level behaviours can
override or enable other lower level behaviours. For example, a “Perception”
behaviour may disable the scan for target behaviour and enable the state “Target
In Front” if it recognizes the target.

One of the design goals of the meta language was to be highly efficient.
Therefore, instead of adding a XML parser and interpreter to the agent, the meta
language is parsed and interpreted offline and converted into highly efficient C
code. This code is then compiled and executed on the PDA. For example, the
example above shows that the programmer uses state names (e.g., “Random
Walk,” and “Scan For Target”). However, the states names are converted to
integers in the C code.

An additional advantage of using a formalized state representation language
with markup in the code is that it is possible to generate other representations.
For example, our state compiler automatically generates a state transition graph.
Figure 6 shows the state transition graph for a simple approach task. The robot
first approaches a target and then walks away from it.

Done

Scan For Target

Delay

Forward Leg Backward Leg

Target In Front Forward Target Right Forward Target Left Forward Target In Front Backward Target Right Backward Target Left Backward

Random Walk

Fig. 6. Automatically generated state transition graph for a simple approach and avoid
task. Solid lines are state transitions.

8 Conclusion

This paper describes the modifications and additions that we made to convert
the Kondo KHR-1 humanoid fighting robot kit into a platform for humanoid
robotic soccer.

The addition of a Sony Clie PDA NR-70V with a pan and tilt assembly
provides visual feedback for the robot. The original embedded controllers of the
Kondo KHR-1 robot are used to control the motion. The PDA communicates
via a serial line with the robot and is able to start/stop the motions of the robot.

We use a vision-based approach to determine the behaviour of the robot. The
robot uses lines on the playing field to localize itself on the playing field and to
map objects into the robot’s environment.

The development of the complex architecture necessary for an intelligent
soccer player is simplified through the use of an XML based meta language for
behaviour trees. This meta language makes the pre-conditions, process stack,
and state transitions explicit. The XML representation is converted into C code,
which can be compiled into efficient code and thus does not introduce computa-
tional overhead through its use.

We are currently investigating methods for adding sensors (e.g., accelerom-
eters, gyroscopes, and force feedback) that provide feedback about the balance
of the robot. Even though active balancing is not necessary for a robot playing
soccer on an even surface, it is at the heart of humanoid robotics research and
is necessary to build robots that are able to move over uneven surfaces. This re-

quires a reprogramming of the PIC micro-controllers used in the Kondo KHR-1
controller boards.

References

1. Jacky Baltes and Thomas Bräunl. HuroSot Laws of the Game. University of Mani-
toba, Winnipeg, Canada, May 2004. http://www.fira.net/hurosot.

2. Jacky Baltes and Patrick Lam. Design of walking gaits for tao-pie-pie, a small
humanoid robot. Advanced Robotics, 18(7):713–716, August 2004.

3. RoboCup Federation. Robocup humanoid league 2002. WWW, November 2001.
http://www.robocup.org/regulations/humanoid/rule humanoid.htm.

4. K. Y. Hough. Mehod and means for recognizing complex patterns. U.S. Patent
3069654, 1962.

5. Jong-Hwan Kim, Dong-Han Kim, Yong-Jae Kim, Kui-Hong Park, Jae-Ho Park,
Choon-Kyoung Moon, Jee-Hwan Ryu, Kiam Tian Seow, and Kyoung-Chul Koh.
Humanoid robot hansaram: Recent progress and developments. JACIII, 8(1):45–
55, 2004.

6. Roger Y. Tsai. An efficient and accurate camera calibration technique for 3d ma-
chine vision. In Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, pages 364–374, Miami Beach, FL, 1986.

7. Fuminori Yamasaki, Tatsuya Matsui, Takahiro Miyashita, , and Hiroaki Kitano.
Pino the humanoid: A basic architecture. In Peter Stone, Tucker Balch, and Gerhard
Kraetszchmar, editors, RoboCup-2000: Robot Soccer World Cup IV, pages 269–278.
Springer Verlag, Berlin, 2001.

8. Ruixiang Zhang, Prahlad Vadakkepat, Chee-Meng Chew, and Janesh Janardhanan.
Mechanical design and control system configuration of a humanoid robot. In Proc.
of 2nd Int. Conf. on Computational Intelligence, Robotics and Autonomous Systems
(CIRAS 2003), Singapore, 15 - 18 December 2003.

9. Changjiu Zhou and Pik Kong Yue. Robo-erectus: a low-cost autonomous humanoid
soccer robot. Advanced Robotics, 18(7):717–720, 2004.

