PAPER NUMBER

RoboCup Humanoid League 2006

By Norberto Velázquez, Salvador Alejandro Velázquez, Juan Guillermo Fitch, Roberto Carlos Ramírez, Daniel Laborin Panamerican University, Campus Guadalajara

Abstract. Here we describe the design and realization of Charrobot , a humanoid robot that plays soccer manufactured by students, able to make several tasks, as walking, identifies objects like a soccer ball and approaches to it and kicks it. Also there will be described not only its primary functions, but all the constraints presented along and characteristics of our design like sizes, components, specifications and design of the structure and electronic system. Because we are presenting two robots, we will specified the two different program codes, one for the player and the other for the goal keeper.

This is the first time we participate in this League and the design we are presenting is totally new.

1 Introduction

From the beginnings of robotic we have been trying to emulate the movements of human beings initiating with some insects movements because of their great functionality and adaptability in certain lands and conditions. The actual challenge of robotic is to equal the mobility of the human being to make movements of great complexity and precision.

With this project we pretend to develop an adaptable prothesis to the legs of a person, with the objective and possibility that an invalid person could walk again and recover great part of he's activities.

We do not have already the design of the prothesis, because this project just begins, in fact the RoboCup competitions will be an opportunity to prove our designs and prototype.

Because of the necessity of automatization, technology and control has been developing because lots of tasks or processes are performed via robots, replacing men and keeping always the simplest and most comfortable way to do things, many ideas can be achieved thanks to these machines.

As robots are flexible enough to develop many or specific challenges, it's design, manufacturing and testing are important points to take care of.

2 Image of the robot

Fig.1. Image of the robot (Charrobot)

3 Name of the robot

Charrobot

4 Robot height

The height of the robot was determine by (1):

$$H = \min(H_{top} 2.2 \bullet H_{com}) \tag{1}$$

The total height (Htop) of our robot is of 52 cm, and the center of mass (Hcom) is at a distance of 27 cm from the floor. Applying this distances in equation (1), we obtain H.

$$H = \min(52cm, 2.2 \bullet 27cm)$$

Because H is 52 cm and contemplating that our robot is participating in the Kid Size Category it fulfills the next condition (2).

$$30cm \le H \le 60cm \tag{2}$$

 $30cm \le 52cm \le 60cm$

5 Size of the robot

Fulfilling with the Humanoid Robots Specifications we will present de general sizes of the robot.

Each foot of the robot must fit in an area of (3):

$$A = \frac{H^2}{22} \tag{3}$$

$$A = \frac{52^2}{22} = 1352 cm^2$$

The robot must fit in cylinder diameter of (4):

$$D = \frac{H}{2} \tag{4}$$

$$D = \frac{52}{2} = 26cm$$

The arms extension maximally streched in horizontal direction is less than (5):

$$1.2 \bullet H (5)$$
$$1.2 \bullet 52 = 62.4cm$$

The robot does not possess a configuration where it is extended longer than (6):

The length of the legs Hleg=23.5, including the feet, satisfies (7):

$$.04 \bullet H \le H_{leg} \le .6H$$

$$.04 \bullet 52cm \le 23.5 \le .6 \bullet 52cm$$
(7)

The height of the head Hhead= 7.5cm, including the neck, satisfies (8):

$$0.1 \bullet H_{head} \le 0.2 \bullet H \tag{8}$$

$$0.1 \bullet 7.5cm \le 0.2 \bullet 52cm$$

Fig.2. Heights of the robot (H_{head} , H_{Top} , H_{leg} , H_{com})

6 Weight of the robot

The weight of the robot is of 2.1 kg and was design so that the torque of our motors could move all the joints in an efficient way. We decide to cut some of the unnecessary aluminum parts that will help us reduce weight without sacrificing resistance joints.

We also distributed the weight of the robot so that the center of mass will help us achieve the necessary height so that this will be in an specified range.

7 Number of degrees of freedom (DOF)

The total number of degrees of freedom in our robot is 16. In each one of the joints of the robot we decided to put a servo motor that each one will represent a (DOF).

Fig.3. Ankle Joint

Developing each one of the parts of the robot we have:

Head: 2 servo motor, therefore we have 2 (DOF) Arms (2): 1 servo motor in each arm, therefore we have 2 (DOF) Waist: 2 servo motors, therefore we have 2 (DOF) Ingle: 4 servo motor, therefore we have 4 (DOF) Knee (2): 1 servo motor in each knee, therefore we have 2 (DOF) Ankle (4): 2 servo motor in each ankle, therefore we have 4 (DOF)

7.1 Actuators

The total number of actuators in our design is of 16 servo motors. Our robot in conform of two different torque servo motor. The first one is a FUTABA S3003 with a torque of 3kg-cm and the second one is a HITEC HS-5645MG with a torque of 12 kg-cm, both with a speed of 60%0.19 sec. We decide to use the HITEC HS-5645 MG of 12 kg-cm of torque in the lowest part of the robot, because is where he needs more force to walk,

kick and stand up in case of falling. By the opposite we use the FUTABA S3003 with a torque of 3kg-cm in the upper part of the robot. Head: 2 servo motor, FUTABA S3003 Arms (2): 1 servo motor in each arm, FUTABA S3003 Waist: 2 servo motors, FUTABA S3003 Ingle: 4 servo motor, the HITEC HS-5645 MG Knee (2): 1 servo motor in each knee, the HITEC HS-5645 MG Ankle (4): 2 servo motor in each ankle, the HITEC HS-5645 MG

Fig.4. Servomotors (Futaba & Hitec)

8 Communication

The robot was designed to act autonomously during the competition, so no external power supplies, teleoperation, of any kind of remote control are used on the system. The start and stop signals are sent them manually to the robot using the control panel; it was programmed to give the robot handler a few seconds to leave the field before it starts to move.

In this occasion, being our first participation and because of the short time in which we developed the project, we did not use a remote control system; without blocking that the robot fulfills with the established rules since it must be able to play even without a wireless network or a low signal of it. However, this will not interference with the robot's performance and fulfillments of the rules.

The communication between the robots, base in our design, was not necessary because each of the robots has specific duties and therefore the programming of each one was independent.

9 Processing boards

It only counts of a processor board that is the brain and was design and construct by members of the team. This contains the microcontroller, he's oscillating circuit, two voltage regulators and connection for the feeding and the control signal of the 16 servomotors. Next we present the distribution of the electronic components of the board.

Fig.5. PCB layout

9.1 Battery

Analyzing the electronic system, we saw that the peak current of the robot its 2 amperes and the operational current its 0.8 amperes, therefore the robot is using four rechargeable AA batteries of 1.2 volts each one and they work at 1200mAh.

Fig.6. rechargeable AA batteries of 1.2 volts

10 Control

The control system of the robot is basically a microcontroller in which several sensors are connected that provide necessary information to assure the correct operation. The brain is microcontroller AT89S8252 of the 8051 family of ATMEL. We choose this element because of his low price, easy programming and because of the four ports of 8 bits of entrance and exits for handling data. The program code its shown in appendix because the program was made in assembler language.

Below is a diagram of the elements that conform it and we will explain its operation ahead.

GENERAL CONTROL SYSTEM

Fig.7. Block diagram of the general control system

10.1 Digital Camera

The main sensor placed on the robot's head is the camera CMUcam2 and it consists of a SX52 microcontroller interfaced with an OV7620 Omnivision CMOS camera on a chip that allows simple high level data to be extracted from the camera's streaming video. The board communicates via a RS-232 or a TTL serial port and has the following functionality:

- Track user defined color blobs at up to 50 Frames Per Second*
- Track motion using frame differencing at 26 Frames Per Second
- Find the centroid of any tracking data
- Gather mean color and variance data
- Gather a 28 bin histogram of each color channel

- Manipulate Horizontally Pixel Differenced Images
- · Transfer a real-time binary bitmap of the tracked pixels in an image
- Arbitrary image windowing
- Adjust the camera's image properties
- Dump a raw image (single or multiple channels)
- Up to 160 x 255 Resolution¹
- Supports Multiple Baudrates: 115,200 57,600 38,400 19,200 9,600
- 4,800 2,400 1,200
- Control 5 servo outputs
- · Slave parallel image processing mode off of a single camera bus
- Automatically use servos to do two axis color tracking
- B/W Analog video output (PAL or NTSC)

Fig.8. Digital camera (CMUcam2)

The primary uses of the CMUcam2 is to track or monitor the color and shape of the ball. Tracking colorful objects are used to localize landmarks, follow lines, or chase a moving beacon, in this case the ball or the opponents. This options are programmed by the manufacturer and we just adapt it to our system.

The CMUcam2 is vision system because it processes the camera image and interprets this information to generate PWM signals that control a pair of servomotors, one adjust the tilt and other the pam, this with the objective of chasing the shape and the color of the object programmed to follow.

The PWM signal that controls these movements of the head will be too introduce to the brain o microcontroller and will be interpreted like a type of coordinates that indicate us were is the ball and were should the robot walk.

¹ Frame rate depends on window size

10.2 Tilt sensors

We also used a pair of tilt sensors to detect when the robot fall to the ground or exceed the limit of tilde and this information is used by the microcontroller to decide the actions to take to get up or to keep the balance.

These are just switches who close when certain inclination is reached or when they are in an horizontal position.

10.3 Position and contact sensors

The position sensors are located in the ankle and knee joints of both legs of the robot and are variable resistances that when they are connected to a oscillator circuit, any variation in the doblez of the joint will be represented like a lineal variation of the period and the duty cycle of the exit signals of the oscillators, that will be too introduce to the micro.

The exit signals of the sensors indicate us sufficient precision the position of the legs of the robot with respect to a reference fija that is the stop position. This information its very important when the land where he is walking its irregular since it provides a new reference of the land and this will help maintain the necessary balance to walk in the land.

The contact sensors that are push buttons will be localized under the feet of the robot and when its connected to the brain, they will have like objective to indicate the moment in which the foot of the robot makes contact with any surface.

11 Conclusions

This project was a great experience for all of us in several aspects, and helped us to discover our different capabilities as well as our weaknesses, that we could handle and fix with the teamwork.

The teamwork was our better strength because we had a lot of problems along the project that we had to solve sometimes briefly, and the way we solved them, which we consider the best one, was the teamwork, since although we were divided in two parts; control system and mechanics; we helped each other in difficult situations and we never forgot that we are a team and we all took this project seriously and with the disposition needed, because this is a not easy project and it demands many time and sacrifice, as well as good will after all what happened even the situation of possible contest cancellation, what did not stop us from working. This project help us to comprehend the different movements of human beings, because we had to analyze carefully how persons move to program our robot an try to imitate the exact movements.

It also help us to understand more about development of prothesis and the advantages that this offers to does people that need to recover their movements.

A very important thing is the fact that we received complete support from our University, part of the budget was supported by them and other resources like electronics and tool labs, computers, software. Another part of the budget was support by the members of the team.

It was a really good thing counting with their help all this time long, what we are very thankful of.

During this project we applied part of the knowledge acquired along the engineering studies, and in some occasions we had to investigate on subjects that didn't know about, and ask for support of some teachers who had the knowledge and the experience to advise us.

12 Appendix

12.1 Program code

ORG 00H

			MOV	21H,#41H ;1 ;carga los
registros	en	la	posició	n cero
			MOV	23H,#18H ;2
			MOV	25H,#30H ;3
			MOV	27H,#4CH ;4
			MOV	29Н,#26Н ;5
			MOV	2BH,#82H;10H ;6
			MOV	2DH,#31H ;7
			MOV	2FH,#42H ;8
			MOV	31H,#40H ;9
			MOV	33н,#30н ;10
			MOV	35H,#2CH ;11
			MOV	37H,#12H;82H ;12
			MOV	39H,#3DH ;13
			MOV	3BH,#26H ;14
			MOV	3DH,#6EH ;15
			MOV	3FH,#2EH ;16

MOV 41H,21H ;SERVO1 ;CARGO LA POSICIÓN INICIAL PARA EVITAR QUE SE VUELVAN LOCOS AL PRINCIPIO
 MOV
 43H,23H
 ; SERVO2

 MOV
 45H,25H
 ; SERVO3

 MOV
 47H,27H
 ; SER
 ;SERVO4 MOV 49H,29H ;SERVO5 MOV 4BH,2BH ;SERVO6 ;SERVO7 MOV 4DH,2DH MOV 4FH,2FH MOV 51H,31H ;SERVO8 ;SERVO9 MOV 53H,33H MOV 55H,35H ;SERVO10 ;SERVO11 MOV 57H, 37H ;SERVO12 MOV 59H, 39H ;SERVO13 MOV 5BH, 3BH ;SERVO14 MOV 5DH, 3DH ;SERVO15 MOV 5FH, 3FH ;SERVO16 MOV 75H,#06H ;CARGO LA VEL LCALL DESPLAZA 51H,#41H ;QUÉDATE UN MOMENTO MOV MOV 75H,#0FFH LCALL DESPLAZA ; EMPIEZA A CAMINAR-----_____ MOV 41H,#37H ;1 ;SE INCLINA A LA IZOUIERDA MOV 43H, #0EH ;2 MOV 4FH,#38H ;8 MOV 5BH, #1CH ;14 MOV 45H, #33H; UN POCO AGACHADO MOV 75H, #02H LCALL DESPLAZA MOV 41H,#2CH ;1 ;SE INCLINA A LA IZQUIERDA MOV 43H, #03H ;2 ;SOLO "A" POSICIONES

MOV 4FH,#2DH ;8 MOV 5BH, #12H ;14 MOV 49H, #2EH ; MUEVE PIE DERECHO PA DELANTE, 8 POSICIONES MOV 59H, #45H 47H,#54H ;MUEVE EL PIE IZQ MOV PARA ATRÁS 8 POSICIONES MOV 4DH, #39H MOV 4BH,#16H; DOBLA UN POCO "4"POS, LAS RODILLAS MOV 57H, #7CH MOV 5DH, #66H ; MUEVE LOS BRAZOS MOV 5FH,#26H MOV 75H,#02H ;VELOCIDAD LCALL DESPLAZA 41H,#41H ;1 ;PARADITO MOV MOV 43H, #18H ;2 MOV 4FH,#42H ;8 MOV 5BH,#26H ;14 MOV 45H, #30H; ERGIDO OTRA VEZ MOV 5DH, #5CH ; MUEVE LOS BRAZOS MOV 5FH,#1CH MOV 4BH, #14H; REGRESA "2"POS, LAS RODILLAS MOV 57H, #7EH MOV 75H, #02H LCALL DESPLAZA MOV 51H, #41H ; QUÉDATE UN MOMENTO MOV 75H, #OAFH LCALL DESPLAZA ;-----SEGUNDO PASO----------; MOV 41H, #4BH ;1 ;SE INCLINA A LA DERECHA "A" POSICIONES MOV 43H, #22H ;2 MOV 4FH, #4CH ;8

MOV 5BH,#30H ;14 MOV 45H, #34H ; UN POCO AGACHADO 75H,#02H ;CARGA VELOCIDAD MOV LCALL DESPLAZA MOV 41H, #5AH ;1 ;SE INCLINA A LA DERECHA MOV 43H, #31H ;2 ;SOLO "A" POSICIONES MOV 4FH,#56H ;8 MOV 5BH,#3AH ;14 MOV 49H, #26H ;5 ;MUEVE PIE DER PA TRAS, 8 POSICIONES MOV 59H, #3DH ;13 MOV 47H, #4CH ;4 ;MUEVE PIE IZQ PA DELANTE, 8 POSICIONES MOV 4DH,#31H ;7 MOV 5DH, #6EH ;15 ;MUEVE LOS BRAZOS MOV 5FH, #2EH ;16 75H,#02H ;VELOCIDAD MOV LCALL DESPLAZA MOV 41H,#41H ;1 ;PARADITO MOV 43H, #18H ;2 MOV 4FH,#42H ;8 MOV 5BH,#26H ;14 MOV 45H,#30H;ERGIDO OTRA VEZ MOV 5DH, #76H ; MUEVE LOS BRAZOS MOV 5FH,#38H MOV 75H, #02H LCALL DESPLAZA MOV 51H,#41H ;QUÉDATE UN MOMENTO MOV 75H, #0AFH LCALL DESPLAZA MOV 41H,#41H ;1 ;carga los registros en la posición cero MOV 43H,#18H ;2

MOV 45H, #30H ;3 MOV 47H, #4CH ;4 MOV 49H,#26H ;5 MOV 4BH, #12H;10H ;6 MOV 4DH,#31H ;7 MOV 4FH,#42H ;8 MOV 51H,#40H ;9 MOV 53H,#30H ;10 MOV 55H,#2CH ;11 57н,#80н;82н ;12 MOV MOV 59H,#3DH ;13 5BH,#26H ;14 MOV MOV 5DH,#6EH ;15 MOV 5FH,#2EH ;16 MOV 75H,#01H EMPEZARE: LCALL DESPLAZA LJMP EMPEZARE ;por ahora vuelvo a empezar ;TODAS LAS DE ABAJO SON SUBRUTINAS DE NIVEL BÁSICO (PWM Y CONTROL DE VELOCIDAD) моv 77н**,**#00н DESPLAZA: ;BORRA LAS BANDERAS

	MOV	78Н , #ОСОН	;por	ahora	un	C0
porque solo	manejamos 1	4 servos				
CARGAPWM:	MOV	R1,75H				;CARGA
VELOCIDAD						
OTROPWM:	LCALL	PWM				; CORRE
PWM						
	DJNZ	R1,OTROPWN	1			

DAMEOTRO1: COMPARACIONES	MOV	A,21H	;EMPIEZA LAS
SERVO 1	CJNE	A,41H,QUELADO1	;COMPARA
	ORL	77H,#01H	
	SJMP	DAMEOTRO2	
QUELADO1:	CLR	С	
	MOV	A,21H	
	SUBB	A,41H	
	JC	MENOR1	

MENOR1:	DEC SJMP	21H DAMEOTRO2 INC 21H		
DAMEOTRO2:	MOV	A,23H	;COMPARA	SERVO
_	CJNE ORL	A,43H,QUELADO2 77H,#02H		
QUELADO2:	SJMP CLR MOV SUBB JC DEC S IMD	DAMEOTRO3 C A,23H A,43H MENOR2 23H DAMEOTRO3		
MENOR2:	SOME	INC 23H		
DAMEOTRO3: 3	MOV	А,25Н	;COMPARA	SERVO
	CJNE ORL	A,45H,QUELADO3 77H,#04H		
QUELADO3:	SJMP CLR MOV SUBB JC DEC	DAMEOTRO4 C A,25H A,45H MENOR3 25H		
MENOR3:	SUMP	INC 25H		
DAMEOTRO4:	MOV	A,27H	;COMPARA	SERVO
	CJNE ORL	A,47H,QUELADO4 77H,#08H		
QUELADO4:	SJMP CLR MOV SUBB JC DEC	DAMEOTRO5 C A,27H A,47H MENOR4 27H		
MENOR4:	SOME	INC 27H		

DAMEOTRO5: 5	MOV	А,29Н	;COMPARA	SERVO
	CJNE ORL	A,49H,QUELADO5 77H,#10H		
QUELADO5: MENOR5:	SJMP CLR MOV SUBB JC DEC SJMP	DAMEOTRO6 C A,29H A,49H MENOR5 29H DAMEOTRO6 INC 29H		
DAMEOTRO6:	MOV	A,2BH	;COMPARA	SERVO
-	CJNE ORL	A,4BH,QUELADO6 77H,#20H		
QUELADO6:	SJMP CLR MOV SUBB JC DEC SJMP	DAMEOTRO7 C A,2BH A,4BH MENOR6 2BH DAMEOTRO7		
MENOR6:	00111	INC 2BH		
DAMEOTRO7: 7	MOV	A,2DH	;COMPARA	SERVO
	CJNE ORL	A,4DH,QUELADO7 77H,#40H		
QUELADO7:	SJMP CLR MOV SUBB JC DEC S.IMP	DAMEOTRO8 C A,2DH A,4DH MENOR7 2DH DAMEOTRO8		
MENOR7:	00111	INC 2DH		
DAMEOTRO8: 8	MOV	A,2FH	;COMPARA	SERVO
	CJNE	A,4FH,QUELADO8		

	ORL	77H,#80H		
QUELADO8: MENOR8:	SJMP CLR MOV SUBB JC DEC SJMP	DAMEOTRO9 C A,2FH A,4FH MENOR8 2FH DAMEOTRO9 INC 2FH		
DAMEOTRO9: 9	MOV	A,31H	;COMPARA	SERVO
	CJNE ORL	A,51H,QUELADO9 78H,#01H		
QUELADO9:	SJMP CLR MOV SUBB JC DEC SIMP	DAMEOTRO10 C A,31H A,51H MENOR9 31H DAMEOTRO10		
MENOR9:	SOME	INC 31H		
DAMEOTRO10: 15	MOV CJNE ORL	A,3DH A,5DH,QUELADO10 78H.#02H	;COMPARA	SERVO
QUELADO10:	SJMP CLR MOV SUBB JC DEC	DAMEOTRO11 C A, 3DH A, 5DH MENOR10 3DH		
MENOR10:	SJMP INC	3DH		
DAMEOTRO11: 16	MOV CJNE	A, 3FH A, 5FH, OUELADO11	;COMPARA	SERVO
	ORL	78H,#04H		
QUELADO11:	SJMP CLR MOV	DAMEOTRO12 C A,3FH		

	SUBB JC DEC SJMP	A,5FH MENOR11 3FH DAMEOTRO12		
MENOR11:	INC	3FH		
DAMEOTRO12: 12	MOV	A,37H	;COMPARA	SERVO
	CJNE ORL	A,57H,QUELADO12 78H,#08H		
QUELADO12:	SJMP CLR MOV SUBB JC DEC SJMP	DAMEOTRO13 C A,37H A,57H MENOR12 37H DAMEOTRO13		
MENOR12:	INC	37н		
DAMEOTRO13: 13	MOV	А, З9Н	;COMPARA	SERVO
	CJNE ORL	A,59H,QUELADO13 78H,#10H		
QUELADO13:	SJMP CLR MOV SUBB JC DEC SJMP	DAMEOTRO14 C A,39H A,59H MENOR13 39H DAMEOTRO14		
MENOR13:	INC	39Н		
DAMEOTRO14: 14	MOV	А, ЗВН	;COMPARA	SERVO
	CJNE ORL	A,5BH,QUELADO14 78H,#20H		
QUELADO14:	SJMP CLR MOV SUBB JC DEC	DAMEOTRO17 C A,3BH A,5BH MENOR14 3BH		

SJMP DAMEOTRO17 MENOR14: INC 3BH

DAMEOTRO17: MOV A,77H ;CHECA LAS BANDERAS Y NO DEJA PASAR HASTA QUE TODAS ESTEN HABILITADAS CJNE A,#OFFH,BRINCOTE MOV A,78H CJNE A,#OFFH,BRINCOTE SJMP AREGRESO BRINCOTE: LJMP CARGAPWM AREGRESO: RET

PWM: SETB	P1.0 ;RUTIN	Α
DE 2mS QUE ACTUALIZA 2	REGISTROS A LA VEZ SERVOS 1 Y	2
SETB	P1.1	
LCAL	L RETA1MS	
MOV	R0,#90H	
OTRO1:	MOV A,20H	
CJNE	A,21H,DDOS	
CLR	P1.0	
SJMP	DOSS	
DDOS: INC	20н	
NOP		
SETB	P1.0	
DOSS: MOV	A,22H	
CJNE	A,23H,TTRES	
CLR	P1.1	
SJMP	FIN1	
TTRES:	INC 22H	
NOP		
SETB	P1.1	
FIN1: DJNZ	R0,OTRO1	
	MOV 20H,#00H	
	MOV 22H,#00H	

RUTINA2: SETB P1.2 ;RUTINA DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 3 Y 4 SETB P1.3 LCALL RETA1MS MOV R0,#90H

OTRO2:		MOV A,24H	
	CJNE	A,25H,CCUATRO	
	CLR	P1.2	
	SJMP	CUATROO	
CCUATRO:	INC	24H	
	NOP		
	SETB	P1.2	
CUATROO:	MOV	A,26H	
	CJNE	A,27H,CCINCO	
	CLR	P1.3	
	SJMP	FIN2	
CCINCO:		INC 26H	
	NOP		
	SETR	D1 3	
FIN2 ·			
FINZ.	DONZ	MOV 24H #00H	
		MOV 2411, #0011	
		MOV 200, #000	
στιττηλ ?•	CETD		л
DE 2mg OUE ACTUAL	777 0	DECTOTION A LA VEZ CEDVOC 5 V	-1 6
DE ZHIS QUE ACIUAL	LUA Z	REGISIROS A LA VEZ SERVOS J I	0
	JEID		
	LCALL	RETAIMS	
0777.00	MOV	RU, #90H	
OTRO3:	a	MOV A,28H	
	CJNE	A,29H,SSEIS	
	CLR	P1.4	
	SJMP	SEISS	
SSEIS:		INC 28H	
	NOP		
	SETB	P1.4	
SEISS:		MOV A,2AH	
	CJNE	A,2BH,SSIETE	
	CLR	P1.5	
	SJMP	FIN3	
SSIETE:		INC 2AH	
	NOP		
	SETB	P1.5	
FIN3:	DJNZ	R0,OTRO3	
		MOV 28H,#00H	
		MOV 2AH, #00H	
RUTINA4:	SETB	P1.6 ;RUTINA	A
DE 2mS QUE ACTUAL	IZA 2	REGISTROS A LA VEZ SERVOS 7 Y	8
~	SETB	P1.7	
	LCALL	RETA1MS	
	MOV	R0,#90H	
OTRO4:		MOV A.2CH	
		· -	

	CJNE	A,2DH,	, ООСНО	
	CLR	P1.6		
	SJMP	OCHOO		
OOCHO:		INC	2CH	
	NOP			
	SETB	P1.6		
OCHOO:		MOV	A.2EH	
	CJINE	A.2FH	, NNUEVE	
	CLR	D1 7	,	
	G.TMP	FIN4		
NNUEVE •	50111	TNC	2도대	
NNOEVE.	NOD	TINC	2.511	
	NUE CETE	ד 1 ת		
	SEIB	P1./		
F1N4:	DJNZ	RU, OTH	RO4	
		MOV	2CH,#00H	
		MOV	2EH,#00H	
=				
RUTINA5:	SETB	P3.0		;RUTINA
DE 2mS QUE ACTUAL	IZA 2	REGIST	ROS A LA VEZ	SERVOS 9 Y
10				
	SETB	P3.1		
	LCALL	RETA1	MS	
	MOV	R0,#90	ОН	
OTRO5:		MOV	A,30H	
	CJNE	A,31H,	,DDIEZ	
	CLR	P3.0		
	SJMP	DIEZZ		
DDIEZ:		INC	30H	
	NOP			
	SETB	P3.0		
DIEZZ:		MOV	A.32H	
21222.	CINE	⊉ 33H	OONCE	
	CIR	D3 1	, CONCL	
	C TMD			
OONCE .	SOME	TNC	2011	
OUNCE:	NOD	TINC	ЭСП	
	NOP	D O 1		
	SETB	P3.1		
F1N5:	DJNZ	RO,OTH	R05	
		MOV	ЗОН , #ООН	
		MOV	32н,#00н	
DIMINAC	0	50.0		
KUTINA6:	SETB	P3.2		;RUTINA
DE 2mS QUE ACTUAL	iza 2	REGIST	ROS A LA VEZ	SERVOS 11 Y
12				
	SETB	P3.3		
	LCALL	RETA1N	MS	

	MOV	R0,#90	ОН
OTRO6:		MOV	А, 34Н
	CJNE	A,35H	DDOCE
	CLR	P3.2	
	SJMP	DOCEE	
DDOCE:		INC	34н
	NOP		
	SETB	P3.2	
DOCEE:		MOV	A.36H
	CJNE	A.37H	TTRECE
	CLR	P3.3	,
	SJIMP	FIN6	
TTRECE .	00111	TNC	Збн
	NOP	1110	5011
	SETB	P3 3	
FING.	D.TNZ	RO OTI	ROA
1 1100.	DONE	MOV	34H #00H
		MOV	36H #00H
		110 V	5011, #0011
ριιττήλ 7 •	CETB	D3 /	• DIITTNA
DE 2mg OUE ACTUAL	<u>энтр</u> туд 2	PECICT	POS A LA VEZ SERVOS 13 V
1A	IUA Z	ICEGIDI	ROS A LA VEZ SERVOS 15 1
T 4	CETD	D3 5	
	TCATT	ין די די די מין די די	MC
	MON	DO #0	чс О ц
OTPO7.	MOV	MOV	7 2 8 L
0107.	C THE		CONTODOE
	CUNE	A, 39A,	, CCATORCE
	CLK	P3.4	
	SUMP	CATOR	~FF
CCATORCE:	INC	30H	
	NOP	D O 4	
	SETB	P3.4	
CATORCEE:	MOV	A, 3AH	
	CJNE	A, 3BH,	,QQUINCE
	CLR	P3.5	
	SJMP	FIN/	
QQUINCE:	INC	ЗАН	
	NOP		
_	SETB	P3.5	
FIN7:	DJNZ	RU,OTI	RO7
		MOV	38H, #00H
		110 V	

RUTINA8: SETB P3.6 ;RUTINA DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 15 Y 16 SETB P3.7 LCALL RETA1MS MOV R0, #90H MOV A, 3CH OTRO8: CJNE A, 3DH, DDIECISEIS CLR P3.6 SJMP DIECISEISS INC 3CH DDIECISEIS: NOP SETB P3.6 DIECISEISS: MOV A, 3EH CJNE A, 3FH, DDIECISIETE CLR P3.7 SJMP FIN8 INC 3EH DDIECISIETE: NOP SETB P3.7 FIN8: DJNZ R0,OTRO8 MOV 3CH, #00H MOV 3EH, #00H ;RETARDO DE LCALL RETA1MS 4mS PARA FINALIZAR LA RUTINA DE PWM LCALL RETA1MS LCALL RETA1MS LCALL RETA1MS RET RETA1MS: MOV R5,#04H ;RETARDO DE 1mS TIEMPO1: MOV R4,#0FAH TIEMPO2: DJNZ R4 TIEMPO2 DJNZ R5 TIEMPO1 RET END

13 References

Arranz Ramonet Antonio. PLANIFICACIÓN Y CONTROL DE PROYECTOS. Grupo Noriega Editores. México 1993. Asti Vera Arrnando.: METODOLOGIA DE LA INVESTIGACION. Editorial Kapeluszo. Argentina. 1a. Ed. 1968. Barahona Abel; Barahona Francisco.: METODOLOGIA DE LOS TRABAJOS CIENTIFICOS. Editorial IPLER. Colombia. 4a. Ed.1984. (160). Diseño en ingeniería mecánica / Joseph Edward Shigley Electrónica : teoría de circuitos y dispositivos electrónicos / Robert L. Boylestad, Louis Nashelsky Enciclopedia de la electrónica, ingeniería y técnica / Char les Belove Mecanismos y dinámica de maquinaria / Hamilton H. Mabie, Charles F. Reinholtz Sistemas digitales: principios y aplicaciones / Ronald J. Tocci CMUcam2 User manual Humanoid League Rules 2006

14 Contacts

If any comment please contact us:

Norberto Velázquez Niño norberto_vn@yahoo.com

Daniel Laborin reina dlaborin@up.mx

Roberto Carlos Ramirez roramire@up.mx

Guillermo Fitch johnnyfs@hotmail.com

Salvador Alejandro Velásquez Niño salvadorvn@mailup.net