PAPER NUMBER

RoboCup Humanoid League 2006

By Norberto Velázquez, Salvador Alejandro Velázquez, Juan Guillermo Fitch, Roberto Carlos Ramírez, Daniel Laborin Panamerican University, Campus Guadalajara

Abstract

Here we describe the design and realization of Charrobot , a humanoid robot that plays soccer manufactured by students, able to make several tasks, as walking, identifies objects like a soccer ball and approaches to it and kicks it. Also there will be described not only its primary functions, but all the constraints presented along and characteristics of our design like sizes, components, specifications and design of the structure and electronic system. Because we are presenting two robots, we will specified the two different program codes, one for the player and the other for the goal keeper. This is the first time we participate in this League and the design we are presenting is totally new.

1 Introduction

From the beginnings of robotic we have been trying to emulate the movements of human beings initiating with some insects movements because of their great functionality and adaptability in certain lands and conditions. The actual challenge of robotic is to equal the mobility of the human being to make movements of great complexity and precision.

With this project we pretend to develop an adaptable prothesis to the legs of a person, with the objective and possibility that an invalid person could walk again and recover great part of he's activities.
We do not have already the design of the prothesis, because this project just begins, in fact the RoboCup competitions will be an opportunity to prove our designs and prototype.

Because of the necessity of automatization, technology and control has been developing because lots of tasks or processes are performed via robots, replacing men and keeping always the simplest and most comfortable way to do things, many ideas can be achieved thanks to these machines.
As robots are flexible enough to develop many or specific challenges, it's design, manufacturing and testing are important points to take care of.

2 Image of the robot

Fig.1. Image of the robot (Charrobot)

3 Name of the robot

Charrobot

4 Robot height

The height of the robot was determine by (1):

$$
\begin{equation*}
H=\min \left(H_{\text {top }} 2.2 \bullet H_{\text {com }}\right) \tag{1}
\end{equation*}
$$

The total height (Htop) of our robot is of 52 cm , and the center of mass (Hcom) is at a distance of 27 cm from the floor. Applying this distances in equation (1), we obtain H .

$$
H=\min (52 \mathrm{~cm}, 2.2 \bullet 27 \mathrm{~cm})
$$

Because H is 52 cm and contemplating that our robot is participating in the Kid Size Category it fulfills the next condition (2).

$$
\begin{equation*}
30 \mathrm{~cm} \leq H \leq 60 \mathrm{~cm} \tag{2}
\end{equation*}
$$

$$
30 \mathrm{~cm} \leq 52 \mathrm{~cm} \leq 60 \mathrm{~cm}
$$

5 Size of the robot

Fulfilling with the Humanoid Robots Specifications we will present de general sizes of the robot.

Each foot of the robot must fit in an area of (3):

$$
\begin{align*}
& A=\frac{H^{2}}{22} \tag{3}\\
& A=\frac{52^{2}}{22}=1352 \mathrm{~cm}^{2}
\end{align*}
$$

The robot must fit in cylinder diameter of (4):

$$
\begin{equation*}
D=\frac{H}{2} \tag{4}
\end{equation*}
$$

$$
D=\frac{52}{2}=26 \mathrm{~cm}
$$

The arms extensión maximally streched in horizontal direction is less than (5):

$$
\begin{align*}
& 1.2 \bullet H \tag{5}\\
& 1.2 \bullet 52=62.4 \mathrm{~cm}
\end{align*}
$$

The robot does not possess a configuration where it is extended longer than (6):

$$
\begin{equation*}
1.5 \mathrm{H} \tag{6}
\end{equation*}
$$

$$
1.5 \cdot 52=78 \mathrm{~cm}
$$

The length of the legs Hleg=23.5, including the feet, satisfies (7):

$$
\begin{equation*}
.04 \bullet H \leq H_{l e g} \leq .6 H \tag{7}
\end{equation*}
$$

$$
.04 \bullet 52 \mathrm{~cm} \leq 23.5 \leq .6 \bullet 52 \mathrm{~cm}
$$

The height of the head Hhead $=7.5 \mathrm{~cm}$, including the neck, satisfies (8):

$$
\begin{equation*}
0.1 \bullet H_{\text {head }} \leq 0.2 \bullet H \tag{8}
\end{equation*}
$$

$$
0.1 \bullet 7.5 \mathrm{~cm} \leq 0.2 \bullet 52 \mathrm{~cm}
$$

Fig.2. Heights of the robot $\left(\mathrm{H}_{\text {nead }}, \mathrm{H}_{\text {Top }}, \mathrm{H}_{\text {leg }}, \mathrm{H}_{\text {com }}\right)$

6 Weight of the robot

The weight of the robot is of 2.1 kg and was design so that the torque of our motors could move all the joints in an efficient way. We decide to cut some of the unnecessary aluminum parts that will help us reduce weight without sacrificing resistance joints.
We also distributed the weight of the robot so that the center of mass will help us achieve the necessary height so that this will be in an specified range.

7 Number of degrees of freedom (DOF)

The total number of degrees of freedom in our robot is 16. In each one of the joints of the robot we decided to put a servo motor that each one will represent a (DOF).

Fig.3. Ankle Joint
Developing each one of the parts of the robot we have:
Head: 2 servo motor, therefore we have 2 (DOF)
Arms (2): 1 servo motor in each arm, therefore we have 2 (DOF)
Waist: 2 servo motors, therefore we have 2 (DOF)
Ingle: 4 servo motor, therefore we have 4 (DOF)
Knee (2): 1 servo motor in each knee, therefore we have 2 (DOF)
Ankle (4): 2 servo motor in each ankle, therefore we have 4 (DOF)

7.1 Actuators

The total number of actuators in our design is of 16 servo motors. Our robot in conform of two different torque servo motor. The first one is a FUTABA S3003 with a torque of $3 \mathrm{~kg}-\mathrm{cm}$ and the second one is a HITEC HS5645 MG with a torque of $12 \mathrm{~kg}-\mathrm{cm}$, both with a speed of $60 \% .19 \mathrm{sec}$. We decide to use the HITEC HS-5645 MG of $12 \mathrm{~kg}-\mathrm{cm}$ of torque in the lowest part of the robot, because is where he needs more force to walk,
kick and stand up in case of falling. By the opposite we use the FUTABA S3003 with a torque of $3 \mathrm{~kg}-\mathrm{cm}$ in the upper part of the robot.
Head: 2 servo motor, FUTABA S3003
Arms (2): 1 servo motor in each arm, FUTABA S3003
Waist: 2 servo motors, FUTABA S3003
Ingle: 4 servo motor, the HITEC HS-5645 MG
Knee (2): 1 servo motor in each knee, the HITEC HS-5645 MG
Ankle (4): 2 servo motor in each ankle, the HITEC HS-5645 MG

Fig.4. Servomotors (Futaba \& Hitec)

8 Communication

The robot was designed to act autonomously during the competition, so no external power supplies, teleoperation, of any kind of remote control are used on the system. The start and stop signals are sent them manually to the robot using the control panel; it was programmed to give the robot handler a few seconds to leave the field before it starts to move.

In this occasion, being our first participation and because of the short time in which we developed the project, we did not use a remote control system; without blocking that the robot fulfills with the established rules since it must be able to play even without a wireless network or a low signal of it. However, this will not interference with the robot's performance and fulfillments of the rules.

The communication between the robots, base in our design, was not necessary because each of the robots has specific duties and therefore the programming of each one was independent.

9 Processing boards

It only counts of a processor board that is the brain and was design and construct by members of the team. This contains the microcontroller, he's oscillating circuit, two voltage regulators and connection for the feeding and the control signal of the 16 servomotors. Next we present the distribution of the electronic components of the board.

Fig.5. PCB layout

9.1 Battery

Analyzing the electronic system, we saw that the peak current of the robot its 2 amperes and the operational current its 0.8 amperes, therefore the robot is using four rechargeable AA batteries of 1.2 volts each one and they work at 1200 mAh .

Fig.6. rechargeable AA batteries of 1.2 volts

10 Control

The control system of the robot is basically a microcontroller in which several sensors are connected that provide necessary information to assure the correct operation. The brain is microcontroller AT89S8252 of the 8051 family of ATMEL. We choose this element because of his low price, easy programming and because of the four ports of 8 bits of entrance and exits for handling data. The program code its shown in appendix because the program was made in assembler language.

Below is a diagram of the elements that conform it and we will explain its operation ahead.

GENERAL CONTROL SYSTEM

Fig.7. Block diagram of the general control system

10.1 Digital Camera

The main sensor placed on the robot's head is the camera CMUcam2 and it consists of a SX52 microcontroller interfaced with an OV7620 Omnivision CMOS camera on a chip that allows simple high level data to be extracted from the camera's streaming video. The board communicates via a RS-232 or a TTL serial port and has the following functionality:

- Track user defined color blobs at up to 50 Frames Per Second*
- Track motion using frame differencing at 26 Frames Per Second
- Find the centroid of any tracking data
- Gather mean color and variance data
- Gather a 28 bin histogram of each color channel
- Manipulate Horizontally Pixel Differenced Images
- Transfer a real-time binary bitmap of the tracked pixels in an image
- Arbitrary image windowing
- Adjust the camera's image properties
- Dump a raw image (single or multiple channels)
- Up to 160×255 Resolution ${ }^{1}$
- Supports Multiple Baudrates: 115,200 57,600 38,400 19,200 9,600

4,800 2,400 1,200

- Control 5 servo outputs
- Slave parallel image processing mode off of a single camera bus
- Automatically use servos to do two axis color tracking
- B/W Analog video output (PAL or NTSC)

Fig.8. Digital camera (CMUcam2)
The primary uses of the CMUcam2 is to track or monitor the color and shape of the ball. Tracking colorful objects are used to localize landmarks, follow lines, or chase a moving beacon, in this case the ball or the opponents. This options are programmed by the manufacturer and we just adapt it to our system.

The CMUcam2 is vision system because it processes the camera image and interprets this information to generate PWM signals that control a pair of servomotors, one adjust the tilt and other the pam, this with the objective of chasing the shape and the color of the object programmed to follow.

The PWM signal that controls these movements of the head will be too introduce to the brain o microcontroller and will be interpreted like a type of coordinates that indicate us were is the ball and were should the robot walk.

[^0]
10.2 Tilt sensors

We also used a pair of tilt sensors to detect when the robot fall to the ground or exceed the limit of tilde and this information is used by the microcontroller to decide the actions to take to get up or to keep the balance.

These are just switches who close when certain inclination is reached or when they are in an horizontal position.

10.3 Position and contact sensors

The position sensors are located in the ankle and knee joints of both legs of the robot and are variable resistances that when they are connected to a oscillator circuit, any variation in the doblez of the joint will be represented like a lineal variation of the period and the duty cycle of the exit signals of the oscillators, that will be too introduce to the micro.

The exit signals of the sensors indicate us sufficient precision the position of the legs of the robot with respect to a reference fija that is the stop position. This information its very important when the land where he is walking its irregular since it provides a new reference of the land and this will help maintain the necessary balance to walk in the land.

The contact sensors that are push buttons will be localized under the feet of the robot and when its connected to the brain, they will have like objective to indicate the moment in which the foot of the robot makes contact with any surface.

11 Conclusions

This project was a great experience for all of us in several aspects, and helped us to discover our different capabilities as well as our weaknesses, that we could handle and fix with the teamwork.

The teamwork was our better strength because we had a lot of problems along the project that we had to solve sometimes briefly, and the way we solved them, which we consider the best one, was the teamwork, since although we were divided in two parts; control system and mechanics; we helped each other in difficult situations and we never forgot that we are a team and we all took this project seriously and with the disposition needed, because this is a not easy project and it demands many time and sacrifice, as well as good will after all what happened even the situation of possible contest cancellation, what did not stop us from working.

This project help us to comprehend the different movements of human beings, because we had to analyze carefully how persons move to program our robot an try to imitate the exact movements.
It also help us to understand more about development of prothesis and the advantages that this offers to does people that need to recover their movements.

A very important thing is the fact that we received complete support from our University, part of the budget was supported by them and other resources like electronics and tool labs, computers, software. Another part of the budget was support by the members of the team.
It was a really good thing counting with their help all this time long, what we are very thankful of.

During this project we applied part of the knowledge acquired along the engineering studies, and in some occasions we had to investigate on subjects that didn't know about, and ask for support of some teachers who had the knowledge and the experience to advise us.

12 Appendix

12.1 Program code

ORG 00 H

	MOV		\#30H ; 14			
	MOV	45 H ,	34 H ; UN POCO	CO AGACHA	ADO	
	MOV	75H,	2H ; CARGA	VELOCIDA		
	LCALL	DESP	AZA			
	MOV	41H,	5AH ; 1 ; SE	INCLINA	A LA	
DERECHA						
	MOV	43H,	31H ; 2	;SOLO "A		
POSICIONES						
	MOV	4FH,	6H ; 8			
	MOV		\#3AH ; 14			
	MOV	49H,	26H ; 5	; MUEVE P	PIE D	ER
PA TRAS, 8	ONES					
	MOV	59H,	3 DH ; 13			
	MOV	47H,	4CH ; 4 ; MUE	EVE PIE I	IZQ P	
DELANTE, 8	ONES					
	MOV	4DH,	31 H ; 7			
	MOV	5DH,	6EH ; 15	; MUEVE L	LOS	
BRAZOS						
	MOV	5FH,	2EH ; 16			
	MOV	75H,	2H	;VELOCIDA		
	LCALL	DESP	AZA			
	MOV	41H,	41H ; 1	; PARAD	ITO	
	MOV	43H,	18H ; 2			
	MOV	4 FH ,	42 H ; 8			
	MOV		\#26H ; 14			
	MOV	45H,	30H; ERGIDO	OTRA VEZ		
		MOV	5DH, \# 76 H	; MUEVE	LOS	
BRAZOS						
		MOV	5FH, \#38H			
	MOV	75H,	2H			
	LCALL	DESP	AZA			
	MOV	51H,	41 H ; QUÉ	ÉDATE UN	MOME	NTO
	MOV	75H,	OAFH			
	LCALL	DESP	AZA			
		MOV	41H, \#41H ;	; 1	; car	ga
los regist	la pos	ición	cero			
	MOV	43H,	18H ; 2			

```
        MOV 45H,#3OH ;3
        MOV 47H,#4CH ;4
        MOV 49H,#26H ;5
        MOV 4BH,#12H;10H ;6
        MOV 4DH,#31H ; 7
        MOV 4FH,#42H ; 8
    MOV 51H,#40H ;9
    MOV 53H,#30H ;10
    MOV 55H,#2CH ;11
    MOV 57H,#80H;82H ;12
    MOV 59H,#3DH ;13
    MOV 5BH,#26H ;14
    MOV 5DH,#6EH ;15
    MOV 5FH,#2EH ;16
        MOV 75H,#01H
EMPEZARE:
    LCALL DESPLAZA
    LJMP EMPEZARE ;por ahora
vuelvo a empezar
;TODAS LAS DE ABAJO SON SUBRUTINAS DE NIVEL BÁSICO (PWM
Y CONTROL DE VELOCIDAD)
DESPLAZA: MOV 77H,#00H ;BORRA LAS
BANDERAS
    MOV 78H,#OCOH ;por ahora un C0
porque solo manejamos 14 servos
CARGAPWM: MOV R1,75H ;CARGA
VELOCIDAD
OTROPWM: LCALL PWM ;CORRE
PWM
    DJNZ R1,OTROPWM
DAMEOTRO1: MOV A,21H ;EMPIEZA LAS
COMPARACIONES
    CJNE A,41H,QUELADO1 ; COMPARA
SERVO 1
    ORL 77H,#01H
    SJMP DAMEOTRO2
QUELADO1: CLR C
    MOV A,21H
    SUBB A,41H
    JC MENOR1
```


DAMEOTRO5:	MOV	A, 29 H	; COMPARA SERVO
	CJNE	A, 49H, QUELADO5	
	ORL	77H, \#10H	
	SJMP	DAMEOTRO 6	
QUELADO5:	CLR	C	
	MOV	A, 29H	
	SUBB	A, 49 H	
	JC	MENOR5	
	DEC	29H	
	SJMP	DAMEOTRO 6	
MENOR5:		INC 29H	
DAMEOTRO6:	MOV	A, 2BH	; COMPARA SERVO
6			
	CJNE	A, 4BH, QUELADO6	
	ORL	77\%, \#20H	
	SJMP	DAMEOTRO 7	
QUELADO6:	CLR	C	
	MOV	A, 2BH	
	SUBB	A, 4BH	
	JC	MENOR6	
	DEC	2BH	
	SJMP	DAMEOTRO 7	
MENOR6:		INC 2BH	
DAMEOTRO7:	MOV	A, 2DH	; COMPARA SERVO
7			
	CJNE	A, 4DH, QUELADO7	
	ORL	77H, \# 40H	
	SJMP	DAMEOTRO8	
QUELADO7:	CLR	C	
	MOV	A, 2DH	
	SUBB	A, 4DH	
	JC	MENOR7	
	DEC	2DH	
	SJMP	DAMEOTRO8	
MENOR 7 :		INC 2DH	
DAMEOTRO8:	MOV	A, 2FH	; COMPARA SERVO
8			
	CJNE	A, 4FH, QUELADO8	


```
    SJMP DAMEOTRO17
MENOR14: INC 3BH
```

```
DAMEOTRO17: MOV A,77H ;CHECA
```

DAMEOTRO17: MOV A,77H ;CHECA
LAS BANDERAS Y NO DEJA PASAR HASTA QUE TODAS ESTEN
LAS BANDERAS Y NO DEJA PASAR HASTA QUE TODAS ESTEN
HABILITADAS
HABILITADAS
PWM: SETB P1.0 ;RUTINA
DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 1 Y 2
SETB P1.1
LCALL RETA1MS
MOV R0,\#90H
OTRO1: MOV A,20H
CJNE A,21H,DDOS
CLR P1.0
SJMP DOSS
DDOS: INC 20H
NOP
SETB P1.0
DOSS: MOV A,22H
CJNE A,23H,TTRES
CLR P1.1
SJMP FIN1
TTRES: INC 22H
NOP
SETB P1.1
FIN1: DJNZ R0,OTRO1
MOV 20H,\#OOH
MOV 22H,\#OOH
RUTINA2: SETB P1.2 ;RUTINA
DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 3 Y 4
SETB P1.3
LCALL RETA1MS
MOV RO,\#90H

```
```

OTRO2: MOV A, 24H
CJNE A,25H,CCUATRO
CLR P1.2
SJMP CUATROO
INC 24H
NOP
SETB P1.2
CUATROO: MOV A,26H
CJNE A,27H,CCINCO
CLR P1.3
SJMP FIN2
CCINCO: INC 26H
NOP
SETB P1.3
DJNZ R0,OTRO2
MOV 24H,\#00H
MOV 26H,\#OOH
SETB P1.4 ;RUTINA
DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 5 Y 6
SETB P1.5
LCALL RETA1MS
MOV R0,\#90H
OTRO3: MOV A,28H
CJNE A,29H,SSEIS
CLR P1.4
SJMP SEISS
SSEIS: INC 28H
NOP
SETB P1.4
SEISS: MOV A,2AH
CJNE A,2BH,SSIETE
CLR P1.5
SJMP FIN3
SSIETE: INC 2AH
NOP
SETB P1.5
FIN3: DJNZ R0,OTRO3
MOV 28H,\#00H
MOV 2AH,\#OOH
RUTINA4: SETB P1.6 ;RUTINA
DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 7 Y 8
SETB P1.7
LCALL RETA1MS
MOV R0,\#90H
OTRO4: MOV A,2CH

```


```

RUTINA8: SETB P3.6 ;RUTINA
DE 2mS QUE ACTUALIZA 2 REGISTROS A LA VEZ SERVOS 15 Y
1 6
SETB P3.7
LCALL RETA1MS
MOV R0,\#90H
OTRO8: MOV A,3CH
CJNE A,3DH,DDIECISEIS
CLR P3.6
SJMP DIECISEISS
DDIECISEIS: INC 3CH
NOP
SETB P3.6
DIECISEISS: MOV A, 3EH
CJNE A,3FH,DDIECISIETE
CLR P3.7
SJMP FIN8
DDIECISIETE: INC 3EH
NOP
SETB P3.7
FIN8: DJNZ R0,OTRO8
MOV 3CH,\#OOH
MOV 3EH,\#OOH
LCALL RETA1MS ;RETARDO DE
4mS PARA FINALIZAR LA RUTINA DE PWM
LCALL RETA1MS
LCALL RETA1MS
LCALL RETA1MS
RET
RETA1MS: MOV R5,\#04H
;RETARDO DE 1mS
TIEMPO1: MOV R4,\#0FAH
TIEMPO2: DJNZ R4 TIEMPO2
DJNZ R5 TIEMPO1
RET
END

```

\section*{13 References}

Arranz Ramonet Antonio. PLANIFICACIÓN Y CONTROL DE PROYECTOS. Grupo Noriega Editores. México 1993.
Asti Vera Arrnando.: METODOLOGIA DE LA INVESTIGACION. Editorial Kapeluszo. Argentina. 1a. Ed. 1968.
Barahona Abel; Barahona Francisco.: METODOLOGIA DE LOS
TRABAJOS CIENTIFICOS. Editorial IPLER. Colombia. 4a.
Ed.1984. (160).
Diseño en ingeniería mecánica / Joseph Edward Shigley
Electrónica : teoría de circuitos y dispositivos electrónicos / Robert
L. Boylestad, Louis Nashelsky

Enciclopedia de la electrónica, ingeniería y técnica / Char les Belove Mecanismos y dinámica de maquinaria / Hamilton H. Mabie, Charles
F. Reinholtz

Sistemas digitales: principios y aplicaciones / Ronald J. Tocci
CMUcam2 User manual
Humanoid League Rules 2006

\section*{14 Contacts}

If any comment please contact us:
Norberto Velázquez Niño
norberto_vn@yahoo.com
Daniel Laborin reina
dlaborin@up.mx
Roberto Carlos Ramirez
roramire@up.mx
Guillermo Fitch
johnnyfs@hotmail.com
Salvador Alejandro Velásquez Niño salvadorvn@mailup.net```


[^0]:    ${ }^{1}$ Frame rate depends on window size

