Toin Phoenix Team Description Paper

1 Introduction

This paper describes kids size humanoid robot system of the team Toin Phoenix.
Last year we developed kids size robots for Robocup 2005. The robots has fol-
lowing abilities.

— Scans environment using laser range scanner to detect the ball and other
objects.

— Walks to any direction using hand crafted sequence of poses.

— Approaches and kicks the ball using deterministic maneuver.

There are many limitation and problems with them. The first is lack of accu-
racy and robustness of its motions. The second is absence of tactical/strategical
planner. And also, laser range scanners are prohibited in Robocup 2006.

We have redesigned our robot systems in aspects of both hardware and soft-
ware for Robocup 2006. Major changes are, mechanisms, locomotion, sensor
systems and higher level of softwares.

2 System Architecture

2.1 Actuator and Sensor System

In this project, distributed control system is used. All motors and sensors are
on RS-485 bus with host controller on main robot CPU. The bus is half-duplex,
so all the transactions including status reading is initiated by the host. Because
all the transactions are initiated by the host, there is no arbitration on the bus.
It guarantees some real-timeness.

Sensors deployed in this project are as follows:

— MEMS gyroscope
— MEMS accelerometer
— FSR (Force Sensitive Resistor)

Gyroscopes and accelerometers are usually used in pairs to measure and
stabilize upper body movement. They are used in pairs to complement their
effective range of measurement in frequency space. Four FSR’s are used in one
sole to measure ZMP position.

Details on sensor feedback is described in following section.
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Fig. 1. Actuator and Sensor Network

Fig. 2. FSRs used in this project



Outside diameter size Width 14mm !_Length 205mm
The maximum measurement load|10 [N]
Resistance at no load 10 [M £2]
Resistance at the maximum load |20 [k2]

Table 1. Brief spec of FlexiForce(FSR)

2.2 Mechanisms

Foot design FSR (Force Sensing Register) is used for four corners in foot back
as a method of detecting ZMP. Four FSR is used for one foot, and eight FSR in
total is used. Figure 2 is the FSR we use and table 1 is its brief specification.

A FSR is a kind of variable resistance which value changes depending on
load to act on. So, it can be used as a force sensor in a perpendicular direction.
Figure. 3 shows the relation between load and resistance of FSR. Fig.3 shows
the experiment method. The thin tubular rubber is placed on FSR and the
load container is placed on them as shown in Fig.3. The load is applied to FSR
adjusting amount of water in the container.
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Fig. 3. Characteristic of FlexiForce

When small load is applied, resistance becomes very large value. It makes
the resulting force value inaccurate. Therefore, it is necessary to put some load
to offset measurable range. Figure.4 shows the structure of the foot. 4 springs
are used to apply constant load on FSRs. Upper plate is attached to leg of the
robot and FSRs between two plates are pressed by the robot and springs.

2.3 Software System

On main processor unit on the robot, there runs NetBSD as an operating sys-

tem. Control software is written as applications and device drivers running on
NetBSD.



Fig. 4. Structure of the foot

Original NetBSD is multi-user preemptive operating system. User level ap-
plication does not have privilege of preempting the BSD kernel, it lacks the
real-timeness for usage such as motion control. In this project, real time tasks
are written as device drivers

In NetBSD, user space application cannot preempt kernel task. Therefore it
is necessary to write such a task in a device driver as an interrupt handler and
use hardware timer to issue timer interrupt.

In this project, video capturing and motion control are coded as device drivers
to ensure real-timeness.

Soft real time tasks such as decision making and image recognition are coded
as user space application. These tasks communicate with real time tasks through
ring buffers to absorb fluctuation of data rate on user space application.
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Fig. 5. Conceptual Diagram of System Software

3 Locomotion

In order to realize locomotion necessary for soccer played by robots, movement
in arbitrary direction with high stability is essential. The movement includes not
only walking but also movements such as kicking a ball. This section describes
method used for building robust locomotion system on the robot.



3.1 Motion Generation

For application such as soccer, quick and fast movements are required and there-
fore maintaining dynamic stability becomes important. For this reason, ZMP was
used to evaluate the stability. Simultaneous optimization was performed to gen-
erate joint trajectory that satisfies free leg trajectory, body trajectory, and ZMP
trajectory at same time. Newton-Raphson method was used in optimization.

Newton-Fuler formulation was used to calculate the inverse dynamics of the
robot and ZMP. By calculating inverse dynamics, joint torque can be calculated,
that can be used to determine if the generated movements can be realized by
the motors attached on the robot.

Figure 6 depicts calculation flow of motion generation with ZMP compensa-
tion.
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Fig. 6. Flow of Motion Generation

ZMP referencing is also used for movements such as kicking a ball. In this
case, ZMP is kept in area near center of the sole. By considering ZMP in these
movements, robot can produce faster and stronger kick without losing the sta-
bility.



3.2 Gait Planning

To achieve arbitrary direction walking, movements are partitioned into frag-
ments. State of walking can be described as a point in multi-dimensional space.
For an example, walking on flat surface can be expressed as three-dimensional
space of z, y, and 6 (See Figure 7).
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Fig. 7. Step Parameters

There are three intuitive phases of walking: start up, constant, and stopping.
According to the model shown above, These phases can be described as follows.
Start up phase is walking with state transition from origin to some value. Con-
stant phase is walking with state kept at same point. Stopping phase is walking
with state transition from some point to origin (See Figure 8). Extending this
concept, various state transition can be defined.
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Fig. 8. Transition in Walk State Space

In this project, fragments of movements toward all direction and combination
will be precalculated. All transitions between the states will also be precalcu-



lated. With this model, arbitrary walking can be achieved by selecting appropri-
ate states and transitions with latency of maximum two steps. This technique is
effective on using ZMP reference walking because it is inherently impossible to
generate gait truly on-line with ZMP reference walking since it involves recursive
calculation for optimization.

For movements to fine adjust robot position, which will be used for adjust-
ing position of the robot against the ball, step width is interpolated between
precalculated values. Strictly speaking, generated gait will not follow the de-
signed ZMP trajectory, but the gait will be robust enough because the inbound
judgment of ZMP is done with smaller polygon than actual sole.

3.3 Feedback System

The described method will generate stable movement if there is no disturbance.
However, in reality, there are not only disturbances from environment, but mod-
eling error will also act as a disturbance. To stabilize robot even under distur-
bances, on-line feedback stabilization is necessary.

Following feedback loops are present to stabilize the robot.

Body angular rate control

Body incline control

— Body acceleration control (ZMP control)
Leg compliance control

Figure 9 depicts conceptual block diagram of the feedback control system.
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Fig. 9. Feedback Control System




Body angular rate control and incline control will maintain body posture
calculated in gait generation. Gyroscope and accelerometer are used respectively.
Body acceleration control prevents ZMP to reach the edge of the supporting
convex hull, which can result in falling down on the floor. Foot pressure sensors
are used to measure ZMP.

Feedbacks above are used for suppressing the effect of disturbance, but the
compliance control is used to suppress the cause of the disturbance. Two leg
support of the walking forms closed kinematic chain which is kinematically re-
dundant. It means presence of internal force is possible. If there is internal force
stored in closed kinematic chain will be released when the friction between the
floor and a foot becomes smaller than the internal force. This phenomenon can
be observed as a “jump” of link movement. This kind of impulsive movement
can be severe disturbance on feedback loops and can result in loss of stability.
The internal force may be produced by mechanical misalignments and tracking
error of the joint servo.

If the motor torque is large enough to lift the robot, redundant constraint
may result in uneven contact between the robot and the floor. By reducing the
stiffness of one leg in double support phase, both internal force and misalignment
can be relieved.

4 Decision making

4.1 Localization

Localization is done by dead reckoning which accumulates expected difference of
position and direction from current motion state. However, positioning error is
also accumulated into estimated position, it must be compensated by measuring
relative position to some object in environment which position is fixed. Further
more, this kind of objects are not always visible because of occlusion and limited
camera sight.

We use a maximum likelihood estimation framework for positioning. The
dead reckoning subsystem updates estimated position and estimated positioning
error on regular basis. If the vision system detects a corner pole and goal together,
it modifies estimated position and estimated positioning error using constraints.

The higher level of software, which manages strategy level of decision, moni-
tors estimated positioning error. If it go too large, the strategy subsystem inter-
rupts current tactics, and observes environment to correct its position.

4.2 Local navigation

The position and direction of the robot is effected by every state of motion(start
up phase, some constant phase and stopping phase or transition phase of mo-
tion). In ordinary case, the effect of single motion(single step) is not large enough
to approach target position and direction, hence combination of some motion to
reach the goal should be calculated. In our system, GA is used to search and



optimize the sequence of motion. The sequence is periodically re-evaluated and
replaced on the fly during execution of it. Therefore if unexpected disturbance
or moving obstacle can be handled.

4.3 Tactics and Strategy

Strategy and tactics are implemented as some kind of FSM. Tactical level of
algorithms such as ball tracking or intercepting are one of states. State tran-
sition is controlled and triggered by strategy subsystem which monitors image
processing subsystem and localization subsystem.

5 Conclusion

Major improvements against Robocup 2005 version of our robot system are de-
scribed. We’ve got a powerful controller, reliable mechanism, precise vision sys-
tem and well structured software. Our robots will show an advanced performance
at Robocup 2006.



