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Abstract— In soccer, the ball is the one object on the field that
a player must attend to at all times. If a player looses track
of the ball position, it cannot continue play but must search
for it. For this reason, the ball in RoboCupSoccer is colored in
orange, which makes it possible to localize it in camera images by
classifying individual pixels to color classes. This simple approach
has several problems. For example, other orange objects next to
the field might be confused with the ball. Another problem is
motion blur, in particular for humanoid robots capturing images
while walking fast. The presence of orange and green at the
same pixel during exposure leads to a mixture of the two colors:
brown, a common color in the images. Ball detection based solely
on color must fail in such a case.

To overcome these problems, we propose a two-stage system
for ball detection and tracking. First, an extended color class
is used to find ball candidates. Both, color and luminance from
small windows around the candidate locations are classified by a
neural network, which has been trained on a large set of balls and
distractors. Thus, in addition to color, the network can analyze
the shape of the object of interest as well as its shading, including
typical highlights and shadows. A detected ball is tracked in
a small window in order to achieve a high frame rate on a
Pocket PC. This also focuses the attention of the system onto
the tracked ball. We evaluated the proposed approach on our
NimbRo KidSize 2006 and 2007 robots. The experiments indicate
that the ball can be reliably detected and confusion with orange
non-ball objects can be avoided.

I. INTRODUCTION

In RoboCupSoccer, reliable visual perception is essential
for successful play. Because reliable computer vision for real-
world situations is beyond the current state of the art, the
objects on the RoboCupSoccer fields are color-coded. In the
Humanoid League, for example, the goals are yellow and blue,
the robots are black with magenta or cyan team markers,
the field is green with white lines, and the ball is orange.
Color-classification [1]–[7] is commonly used as a first step
in the computer-vision systems. This simple approach makes it
possible to run computer vision in real-time onboard the small
computers the robots are equipped with. It discards, however,
detailed information about hue, saturation, and luminance of
pixels. While for larger objects, such as the goals, color
classification and simple geometric analysis suffice for reliable
detection, the perception of the ball is more difficult. The
ball moves quickly on the field and outside the field, it
is relatively small, and it lacks verifiable internal structure.
Common problems in ball detection include false detections
in orange objects, wooden floors, or exposed skin next to the
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Fig. 1. The orange ball behind a white line on a green field. (a) Clean image
captured from a standing robot. Typical highlights and shadows are visible.
(b) Same situation with motion blur due to humanoid walking movements.
The green blends with the orange to a brownish color.

field as well as failed detections due to motion blur. If the
ball moves quickly relative to the camera, the presence of
orange and green at the same pixel during exposure leads to
a mixture of the two colors: brown, a common color in the
images. Fig 1(b) shows such a blurred ball captured from a
walking humanoid robot [8]. Ball detection based solely on
color must fail in such a case.

The ball is not only most difficult to detect, but also the most
important object on the field. In fact, the ball is the one object
that a player must attend to at all times. If a player looses
track of the ball position, it cannot continue play, but must
search for it. Both difficulty and importance of ball detection
warrant special attention for the ball.

In this paper, we propose a two-stage system for ball
detection and tracking. First, in addition to orange a brownish
color class is used to find ball candidates. Both, color and
luminance from small windows around the candidate locations
are classified by a neural network, which has been trained on a
large set of balls and distractors. Thus, in addition to color, the
network can analyze the shape of the object of interest as well
as its shading, including the typical highlights on the upper
side of the ball and shadows below the ball, which are visible
in Fig. 1(a). A detected ball is tracked in a small window in
order to achieve a high frame rate on a Pocket PC. This also
focuses the attention of the system onto the tracked ball.

The remainder of the paper is organized as follows. Af-
ter we review various approaches for ball detection in the
next section, we present the proposed framework for ball
detection and tracking in Sec. III. We evaluate our system



using captured video and online experiments with our NimbRo
KidSize robots. The results are presented in Sec. IV. The paper
concludes with a discussion and ideas for future work.

II. RELATED WORK

Several approaches to make ball detection less dependent
on color classification have been proposed in the literature. In
addition to its orange color, the spherical shape of the ball
is frequently utilized. Coath and Musumeci [9], for example,
proposed a method to detect the ball using arc fitting through
three consecutive points along detected edges. The arcs vote
for the ball center. This approach is able to detect partially
occluded balls, but it relies on reliable edge detection and is
applicable only for balls covering many pixels.

Template-based approaches track the ball using a circular
template [10], [11]. Regions on both sides of the template
border are described by color histograms. While this approach
improves upon hard color classification, it ignores important
spatial details. Modeling the top side of the ball in the same
region as the bottom side makes it impossible to utilize typical
highlights and shadows caused by the spherical ball shape that
is illuminated from above.

A trainable approach to ball detection was proposed by Mitri
et al. [12]. They first apply edge detection to a region of
interest. This discards color information as well as shading.
A classifier cascade is trained on Haar-like features. This
approach detects balls, but the classifier reacts also to other
circular objects such as wheels and heads.

Another classifier-based system has been proposed by
Mayer et al. [13] for the detection of robots in MiddleSize
League. Regions of interest are classified based on simple re-
gion descriptors and orientation histograms. This also discards
valuable image information. Hence, the applicability to ball
detection is unclear.

III. BALL DETECTION AND TRACKING

The proposed ball detection system consists of two parts.
First, potential ball candidates are detected in sub-sampled
images which represent color classes. Second, ball candidates
are verified by a neural classificator using color and luminance
information of small regions around them. A detected ball is
tracked in a small window in order to achieve a high frame
rate.

A. Detecting Ball Candidates

Our Pocket PC camera captures images with a resolution
of 640×480 pixels at a rate of 15fps in YUV 4:2:2 color
space. The individual pixels are classified to color classes
as follows. First, the Y-component is compared to luminance
thresholds for classification of black and white. For pixels with
intermediate luminance, the color class is defined by a look-
up-table for the U and V values. Color classes are described
by ellipses in the UV plane. In addition, each color class is
restricted to an interval in the Y dimension. The ball is covered
by two color classes, which are illustrated in Fig. 2: Class
Orange represents pure orange pixels. Class OrangeCandidate

Fig. 2. Color classes as ellipses in the UV plane: The big-dotted ellipse
represents the Orange class, whereas the small-dotted ellipse defines the
OrangeCandidate class. The Green color class is defined by the unbroken
ellipse. The yellow and blue goal are indicated by the dashed ellipses.

includes the first one, but it is extended towards green to
account for the mixing of the field color and the ball color
due to motion blur.

For each color class, the pixels belonging to it are counted in
an 80×60 grid. Each pixel in this color class image represents
the number of occurrences of its color in a 8×8 window of
the original image. While this subsampling reduces spatial
resolution, it allows for quickly assessing the density of the
corresponding color in image regions.

In the next processing step, orange-cells containing too few
orange pixels are set to zero. Also, orange pixels that have too
little green in their neighborhood are removed. Because the
Bayer pattern of the camera induces orange and cyan colors
at sharp contrasts, Orange is also inhibited at the edges of
white regions, such as field lines.

To find regions of interest that could contain balls, modes
are searched for in the Orange class image. The regions of
interest are detected in the following order. As an initial guess,
the maximal cell in the color class image is identified. Starting
from this point x0, Mean Shift [14] – a fast, nonparametric
estimator of density gradient – is used to find the closest mode.
Iteratively, the center of color mass within a small search
window W around xk is computed. In the next iteration, xk+1

is shifted to it.

xk+1 ←

∑
(i,j)∈W (xk) :

(
i
j

)
· cell(i, j)∑

(i,j)∈W (xk) : cell(i, j)
(1)

This assignment is repeated until convergence which typ-
ically needs only a few iterations. Fortunately, Mean Shift
provides a the position of the peak with sub-cell accuracy,
so the corresponding pixel in the original image can easily be
estimated. The mode-finding procedure is repeated four times,
so that up to four ball candidates are detected. In doing so, cells
are skipped which were visited previously. If less than four
modes are found in the Orange color class image, we continue
our search in the upper half of the OrangeCandidate class
image. The lower half of this image is not searched because it



Fig. 3. Representation of the orange-greenness. UV color values are projected
orthogonally onto the line between Orange (1.0) and Green (0.0). Projections
outside this interval are saturated.

contains balls close to the robot that are large enough to still
be classified as Orange under motion blur.

The detected ball candidates are verified as follows. In case
a ball candidate is found in the lower half of the image, which
is close to the robot, the verification process is straightforward.
If it represents a mode in the Orange class image, it is deemed
to be a ball. Other glaring orange objects should not be on the
green field next to the robot.

B. Neural Ball Classification

Ball candidates found in the upper half of the image are
more challenging because they consist of fewer pixels, are
more strongly affected by motion blur and are more likely to
correspond to distractors outside the field. They are classified
by a neural network which has been trained to distinguish
between balls and non-balls.

The following preprocessing steps are performed in order to
represent the region of interest in a format suitable for neural
classification. The region of interest is centered at the ball
candidate. It is represented as a constant-size (48×48 pixels),
two-channel image.

The first image channel carries luminance information. Nor-
malization for average intensity or contrast is not necessary be-
cause our camera already adjusts the brightness automatically.
This makes the YUV image invariant to global illumination
changes.

The second image channel represents color information
along a orange-green axis. We will refer to it as the orange-
greenness. The orange-greenness is computed as illustrated
in Fig. 3. Each color value in the UV plane is projected
orthogonally onto the axis between the center of the Orange
color class and the Green color class. The orange-greenness
values are normalized such that Green corresponds to zero and
Orange corresponds to one. Projections outside the interval
between the centers of the Green and Orange colors are
saturated to zero or one, respectively. We choose this particular
color representation because it is specific for the task at hand,
and because it can be quickly adapted to changes in object
color and changes in illumination. To adapt to new conditions,

luminance

orange-greenness

Fig. 4. Preprocessing of regions of interest. The YUV image is represented
using two channels (luminance and orange-greenness) and sub-sampled to
12×12 pixels.

Fig. 5. Network architecture: High-level features are given to the neural
network in addition to the image-like representation.

only a calibration of the color centers is necessary. The orange-
greenness is invariant to such changes. Hence, the neural
network needs no retraining.

To reduce the number of parameters for the neural network,
the two-channel images are subsampled to 12×12 pixels.
This yields a 288-dimensional feature vector that is presented
as input to the neural network. The preprocessing steps are
illustrated in Fig. 4.

Further preprocessing steps are deliberately omitted to give
the neural net the opportunity to identify characteristic ball
features itself. For instance, rotation invariant representations
would decrease the dimensionality of the feature vector sig-
nificantly but would also discard important spatial detail. This
is undesirable since the spherical balls always show dark
shadows in the lower half and bright highlights on the top.
Due to the motion blur, reliable segmentation of the ball
and the background would be extremely difficult. Image-like
representations preserve the relevant spatial relations and avoid
the need for segmentation.

In addition to the image-like feature vectors, we also feed
higher-level features into the first hidden layer of the neural
network. This is illustrated in Fig. 5. In brief, our neural
network has a input dimension of 288. The first hidden layer



consists of 36 nodes plus 4 high-level features. The network
has a second hidden layer with 12 nodes. The output is a
scalar between 0 and 1. All nodes have sigmoidal activation
functions.

Four high-level features are added, two calculated from the
orange-greenness image, and two from the luminance one.
In the orange-greenness image the features are sums over
circular regions. The first one is a circular region in the center
of the image, which is supposed to be orange if a ball is
observed. The second feature is the sum over a ring-shaped
region outside the center, which is typical non-orange for ball
images. In the luminance image, both features are vertical
gradients located in the center with different kernel sizes. This
reflects the fact that balls have often a high-light on the top
and are always dark at the bottom. Finally, a sigmoid transfer
function is applied to all four features.

By adding such high-level features in the first hidden
layer, domain knowledge can be expressed and offered to the
neural network. The network is free to use these features
for classification. Because it has access to the image-like
representations, the network is not restricted to the features
chosen by the designers but it can also construct other features
useful for classification in its hidden layer.

The network is trained to output one for balls and zero for
non-balls. From the ball candidates presented to the network,
the ball candidate with highest output value is selected as the
ball. If all output values remain below 0.5, no ball is detected
and the ball is deemed non-visible.

C. Ball Tracking

If the ball has been detected in the last frame, not the
whole image but only a small window of 96×96 pixels
around the last ball occurrence is processed. We use the last
ball position as predictor for the current ball, because the
walking movements of our humanoid robots cause back-and-
forth camera motion that is hard to model in more detail. For
a wheeled robot, a Kalman predictor would be appropriate
here. The focusing to a small window does not only enhance
the frame rate significantly (from ca. 5fps to ca. 9fps). It
also focuses the search for potential ball candidates to the
relevant image parts. Thus, the ratio of true balls among the
four ball candidates is raised. In principle, tracking a wrong
ball hypothesis could lead to non-detection of better ball-
candidates appearing outside the tracking window. To prevent
this undesired effect, we fully process every fourth frame. In
these frames, the other objects on the field are also perceived.

IV. EXPERIMENTS

A. Neural network training

A set of 600 examples, 160 balls and 440 distractors, all
extracted ball candidates as described above, is produced. The
set is divided randomly into a training set (480) and a test set
(120). A neural network is trained on the training set using
RPROP [15]. Using much more distractors than balls for the
training process reduces the probability of an output close to
1.0. Thus, it reduces the number of false positive detections.

Fig. 6. Robots used for the experiments: NimbRo KidSize 2006 (left) with
Pocket PC and two cameras and NimbRo KidSize 2007 (right) with a tiny
PC and three cameras.

Fig. 7. Real-time experiment: The robot is supposed to approach the ball
(middle). Other orange objects – a felt cloth (left) and a book (right) – are
placed on the field in order to distract the robot.

In order to avoid overfitting, the training is stopped as soon
the total sum of the squared error drops below 1.0.

B. Recognition performance

The intended generalization property is evaluated on the
test set, consisting of 32 balls and 88 distractors. The mean
squared error for tested balls is 0.0466 and the maximal error
is 0.8538. Only one of the balls has not been detected (1 false
negative out of 32).

The mean squared error for tested distractors is 0.0008, with
a maximal error of 0.1851. This means that all distractors have
been classified as non-balls (0 false positive out of 88).

C. Real-time task

In the second experiment, the trained neural network is
evaluated in closed-loop running on the Pocket PC onboard
a NimbRo KidSize 2006 robot. The robot is shown in the left
part of Fig. 6. A ball as well as other orange objects - like
a book or an felt cloth - are placed on the field, as shown
in Fig. 7. In order to ensure a fair experiment, these orange
distractors are not trained as negative examples beforehand.
The humanoid is supposed to approach the ball without being
distracted by the other orange objects. This experiment is
performed twice: once on a robot using simple orange-center-
green-surround ball template, another time on a robot using the
presented two-stage framework. For the purpose of evaluation,
a video is recorded on the robot.

In the real-time experiment using the simple ball template,
the humanoid approaches the ball only by chance. As ex-
pected, it is distracted by the other orange objects. When
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Fig. 8. Ball candidates classified by a neural network. (a) True positive
classifications of the ball are shown in red circles. (b) Distractors – a felt
cloth, a book, wooden floor and a yellow goal post (top left to down right) –
are classified correctly as non-balls.

Fig. 9. Images captured by the three cameras of a NimbRo KidSize 2007
robot. The robot can see in all directions above the horizon. Objects close to
the robot are also in the field-of-view.

the presented two-stage framework is used, its movements
are much more directed towards the ball. We examined the
recorded video after the experiment. Although the ball is
often blurred and the other orange objects are prominent in
the picture, the neural network makes the right classification
decision in almost all cases. Fig. 8 shows some of the ball and
the non-ball candidate regions.

D. Transfer to NimbRo KidSize 2007 robots

After RoboCup 2007, we ported our two-stage ball detection
system, which was developed for our KidSize 2006 robots,
to our new NimbRo KidSize 2007 robots [16]. These are
equipped with three ultra-wide angle WVGA USB cameras
which provide them with an omnidirectional field-of-view,
as shown in Fig. 9. In contrast to the Pocket PC, the uEye
industrial USB cameras have much less motion blur, because
they feature a global shutter for which we configured a short
exposure time of 15ms.

We compiled an image data set of 273 balls and 548
non-balls under varying lighting conditions, randomly split
in a training set of 521 samples, a validation set of 108
samples, and a test set of 192 samples. To account for the
capabilities of the new camera, we chose a difficult set of
distractors containing ball-sized orange boxes and orange toys
(Fig. 10). The averaged distractor and ball images can be seen
in Fig. 11. Please note that balls, as opposed to distractors,
show a characteristic top-down gradient in luminance, while
in the orange-greenness the average ball looks like a bright
disc.

For the NimbRo KidSize 2007 ball classification we use
a neural classifier similar to the one presented in previous
sections. We compared the performance of the network with
a k-Nearest-Neighbour (KNN) classifier with k = 5 and a

(a) (b) (c)

Fig. 10. Sample Stimuli for NimbRo KidSize 2007 robots: (a) orange toy
(b) orange box (c) ball

(a) (b) (c) (d)

Fig. 11. Averaged neural-network stimuli. (a) Luminance image of balls (b)
Orange-greenness of balls (c) Luminance of non-balls (d) Orange-greeness of
non-balls.

neural classifier with one hidden linearly activated neuron.
While the KNN classifier achieved an accuracy of 88.5%

on the test set, the linear neural net classifies 86.5% correctly.
Our neural classifier with 4 hidden units achieved a 91.1%
accuracy. Thus, the two-stage system can reliably distinguish
balls from other orange objects on the field.

We further analyzed the learned classification by flipping
the balls in the test set upside-down and presenting them to
the network. Now, the KNN achieves an accuracy of 76.6%,
the linear classifier 70.0% and our neural classifier with four
hidden neurons 74.0%. The performance drop suggests, that
the luminance gradient on the ball is an important character-
istic of the ball.

The invariance of orange-greenness to lighting conditions
was tested by training a neural classifier on a subset of the balls
where lighting conditions differed significantly from lighting
conditions in the test set. Even here, a neural classifier with
seven hidden units achieved an accuracy of 88.2%.

V. CONCLUSION

In this paper, we presented a two-stage system for ball
detection and tracking. The system finds regions of interest
using a ball-candidate color. The ball candidates are classified
by a neural network, which can make use of both color and
luminance information. Detected balls are tracked in real-time
on a Pocket PC and a tiny PC.

The experimental results show that our system is able to
ignore orange objects, which typically would lead to false
detections. Moreover, the neural classifier is able to detect balls
that are severely blurred. Both effects increase the reliability
of the ball perception, in particular for balls far-away from the
robot. Being able to see the ball at larger distances directly
improves performance in the soccer games.

The system is practical for the use in the RoboCupSoccer
domain, but it requires some effort for color calibration and
the annotation of captured video. In future work, we would
like to incorporate semi-automatic color calibration and semi-
automatic generation of ball and non-ball examples in order
to reduce the work load for setup.



We also plan to apply the neural classifier to verify detec-
tions of other small-sized objects on the field, such as goal
post footers, corners, junctions and crossings of field lines, as
well as other robots.
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