
Learning Humanoid Soccer Actions
Interleaving Simulated and Real Data

Luca Iocchi and Fabio Dalla Libera and Emanuele Menegatti

Abstract— This paper presents an approach for learning
complex tasks on real robots, like walking or kicking in a
humanoid soccer robot, profiting at most from the possibility to
run simulations of a virtual model of the robot. This approach
avoids to damage the real robot in the time consuming trials
needed to learn a correct behavior and avoids to overfit the
virtual robot model. The basic idea is to run most of the learning
steps in simulation and to use a few learning steps on the real
robot to assess discrepancies between the simulation and the
reality. The calculated discrepancies are used to correct the
fitness function used in simulation. Experiments on interleaving
the learning between a real robot (Robovie-M by VStone) and
its virtual model in USARSim are presented. They show that the
proposed method is effective and significantly reduces learning
time.

I. INTRODUCTION

One of the first problems investigated by the humanoid
robot community has been the creation of stable and human-
like walking for humanoid robots. Several methods have
been presented to address the gait stability problem. Some
of them stem from control theory approaches and are based
on the inverted pendulum model or on the calculation of the
zero moment point (ZMP). All of these aim at planning the
best trajectories for the different joints of the robot. There
are several possibilities to calculate these trajectories like:
offline pattern generation, offline pattern generation with
online feedback compensation, and online pattern generation
with online feedback control [10].

Most of these methods cannot be applied on small hu-
manoid robot platforms due to their lack of high precision
sensors and to the small computational resources they typi-
cally have on board. However, Manni and Indiveri proposed a
simple control architecture for small humanoid robots based
on the use of the FRI (Foot Rotation Indicator) point and the
support polygon that allows to decouple the gait generation
issue and the overall dynamic stability of the system [1].

The generation of stable walking for small humanoid
robots is simplified by their relative intrinsic stability (i.e.,
relatively small size, low center of gravity, large feet). For
most of the robots the gait is designed by hand with the
tools (mostly graphical user interfaces) provided by their
manufacturers (among the others: VStone, Kondo, ZMP,
Robotis). However, hand-made motion generation is time
consuming, can wear the robot due to the several trials and
errors, and require deep understanding of the robot dynamics

L. Iocchi is with DIS, Sapienza University, Via Ariosto 25, 00185 Rome,
Italy ; e-mail: iocchi@dis.uniroma1.it

F. Dalla Libera and E. Menegatti are with the Department of Information
Engineering The University of Padua via G. Gradenigo 6/A I-35131 Padova
- ITALY emg@dei.unipd.it

from the motion designer. For these reasons software for
automatic generation of walking gaits (and in general of
complex motions) is needed.

A possibility is to use learning or optimization algo-
rithms to find the optimal parameters to control the gait
of the robot. These methods can be divided into three
different groups of approaches: (i) stochastic optimization
methods (e.g., Genetic Algorithms, Evolutionary Algorithms,
Simulated Annealing), (ii) sampling methods (e.g., Nelder-
Mead simplex approach, Pattern Search), and (iii) surrogate
optimization methods (e.g., [8]).

However, performing the several experiments needed by
the learning algorithms on a real robot requires an extensive
use and wearing of the robot, manpower for observing the
results, and expensive lab time. For these reasons several
researchers developed models of their robot in order to be
able to perform the learning/optimization stage in simulation.
However, the results of these simulations are strictly coupled
to quality and accuracy both of the robot model and of
the physical simulator. Most of the time the derivation
of accurate enough robot models requires too much effort
and in case of the small-humanoid robots might be not
possible to obtain due to the low reliability/repeatability of
the actuators used. Moreover, a learning process performed
only in simulation might overfit the virtual model of the robot
and its loose correspondence to the real robot, ending in a
perfect gait for the virtual robot, but in a poor result for the
real robot.

For these reasons, we propose to interleave learning steps
in simulation with learning steps on the real robot. We will
show that most of the learning can be done in simulation
and the steps on the real robot are used to adjust the learnt
fitness function. As the basic learning technique we use
Genetic Algorithms (GAs) to explore the parameter space
of a fuzzy controller that implements the behavior of the
robot. The learning approach proposed in this paper has
been experimented on the humanoid robot Robovie-M and
its virtual model in USARSim (see Figure 1).

The remainder of the paper is organized as follows:
Section II reports some of the previous works using learning
algorithms on small humanoid robots. Section III describes
the proposed algorithm for interleaved learning in simulation
and in reality. Section IV introduces the learning process
used to test the effectiveness of the proposed approach.
In Section V we describe the experimental setting and the
performed experiments that validate the proposed approach.
Finally, Section VI summarizes the work done and hints the
future directions of this research.

(a) The real robot (RR)

(b) The virtual robot (VR)

Fig. 1. The real robot Robovie-M by VStone and the virtual robot rendered
by the USARSim simulator

II. RELATED WORK

Several authors applied learning techniques to biped walk-
ing: either to learn from scratch to walk or to optimize the
gait to the particular speed of the robot or to the terrain
on which the robot is moving. Tedrake et al. proposed a
reinforcement learning approach which optimizes an online
control policy, so their robot, due to its mechanical design,
is able to acquire a robust policy for dynamic bipedal
walking from scratch [14]. A similar approach for a passive
dynamic walker was proposed in [13]. Pastrana used genetic
algorithms to optimize the speed coordination and control of
a humanoid robot’s gait in order to make it walk in a stable
manner at different walking speeds [11]. Other approaches to
biped walking have used evolution strategies for optimizing
a parametric walking model [6] or model-free methods based
on neural oscillators [7]. Most of these approaches make use
of a simulator for speeding up the learning process. The way
in which the simulator is used is by performing preliminary
experiments on it to find a suitable solution and then use
this solution on the robot, and possibly performing additional
learning processes on the real robot. The problem with this

kind of approaches is that they strongly rely on the fidelity
of the simulated model.

To improve the effectiveness of using a simulator for robot
learning, some authors propose a different use of a simulator.
Co-evolution of models and tests is presented in [3], [9],
where evolution on the simulator is used to improve the
performance in some behavior, while evolution on the real
robot is used to improve the simulator model. Also Abbeel et
al. [2] present a Reinforcement Learning technique in which
real experiments are used to evaluate a policy, while simu-
lated experiments are used to estimate the derivative of the
evaluation with respect to the current policy. The two above
approaches thus interleave simulated and real experiments
to refine some model of the system: the simulator model in
the first case, the dynamics of a Markov Decision Process
in the second case. However, the problem of refining the
model on the basis of the difference in performance between
real and simulated behaviors is increasingly difficult as the
complexity of the problem increases.

The approach presented in this paper also uses interleaved
simulated and real experiments, but with the objective of
refining the function used to evaluate different solutions
instead of the model of the system. When complex tasks
are considered (as the biped locomotion) this is an obvious
advantage since approximating a function is much easier than
refining a model.

III. LEARNING BY INTERLEAVING SIMULATED AND REAL
EXPERIMENTS

In this section we describe an algorithm for learning using
interleaved simulated and real experiments. The method
applies to real systems for which making experiments is
expensive and time consuming, and for which a simulator is
available. Obviously, the simulator cannot exactly reproduce
the real system; however, our approach has no requirements
for such a simulator, but it only assumes that the behavior in
the simulator is similar to the real system. As an example,
we apply the proposed technique to the problem of learning
biped locomotion for a humanoid robot. .

The approach we will follow is to perform a set of
experiments on the simulator, then some of them are repeated
on the real robot in order to determine discrepancies in the
results. Such difference is then used in the next steps of
the learning process in order to make results obtained with
simulated experiments closer to the real ones. This process is
then repeated several times until some convergence criterion
is met.

In this iterative process we do not aim at refining the
robot model or the simulator. The main motivation is that
refining of simulated models to make it more realistic is
anyway a difficult and very time consuming process. Our
solution, instead of modifying the simulated model of the
system, it just dynamically computes a correction function
that measures differences between the real and the simulated
system outputs. This correction function is applied when
scoring the simulated examples in order to make the results

Definitions
P = {X1, ..., Xn} : genetic population
FR: real evaluation function
FS : simulated evaluation function
∆F i: correction evaluation function at iteration i
FC

i ≡ FS + ∆F i: corrected simulated evaluation function at iteration i
δi
F (X) ≡ FR(X)− F i

C(X)
σ : standard deviation of the correction term
h : number of simulation steps before a real evaluation

Algorithm
INPUT: FR, FS

OUTPUT: X∗ : local maxima of FR

CONSTANTS: σ, h

P 0 ← random individuals
i← 0
∆F i ← 0
while (not termination condition) do

for h steps do
evaluate P i with F i

C
P i+1 ← genetic evolution from P i

i← i+ 1
∆F i+1 ← ∆F i

end for
evaluate P i with FR

∆F i+1(X)← ∆F i(X) +
∑n

k=1
δi
F (Xi

k) e
−
||X−Xi

k
||

σ2

i← i+ 1
end while
return X∗ = argmaxX∈P iF

i
C(X)

TABLE I
THE INTERLEAVED SIMULATED AND REAL DATA LEARNING

ALGORITHM.

similar to the real system even when the simulator behaves
differently.

In this work, we consider a genetic algorithm as the basic
learning technique and the evaluation function is given by a
fitness function that measures the quality of the solution. By
interleaving experiments with the simulator and experiments
with the real system, the proposed algorithm computes a
correction function that represents the difference between
the fitness values obtained with the real system and the
fitness values obtained with the simulator. Since the scores
of the simulated experiments are summed to the correction
function, they tend to approximate scores that would have
been obtained from real experiments.

The learning algorithm for interleaved use of simulated
and real data is presented in Table I. We consider two
evaluation functions: FR, which is the evaluation function
(or fitness function) when performing experiments on the
real robot, and FS , which is the evaluation function when
performing experiments in a simulator.

The algorithm provides a way to find a (local) optimal
solution to FR performing many evaluation steps on FS and
only a few evaluation steps on FR. This is achieved by modi-
fying at each iteration the function that evaluates experiments
with the simulator, taking into account discrepancies from
the evaluation on the real system. More specifically, at each
iteration individuals in the genetic population are evaluated

with the fitness function FC
i ≡ FS + ∆F i, where FS is

the value obtained by the simulated experiments and ∆F i

represents the difference obtained with respect to the real
experiments. As we will show in the next paragraphs, after a
sufficient number of iterations, F i

C approximates FR around
some local maximum of FR, therefore an optimal solution
of F i

C is also a local sub-optimal solution of FR.
∆F i is defined as the sum of a set of Gaussian-like func-

tions δi
F (Xi

k) e−
||X−Xi

k
||

σ2 , with δi
F (Xi

k) ≡ FR(X)− F i
C(X)

representing the difference between real and simulated eval-
uation. These functions are determined and added to ∆F i

periodically (every h iterations) during the algorithm. Each
of these functions represents a local correction of F i

C towards
FR. More formally, in correspondence with points Xk for
which a local correction exists, the value of ∆F i(Xk) is
a good approximation of FR − FS , and thus F i

C(Xk) '
FR(Xk).

Therefore, the presented algorithm allows for finding a
local optimal solution of FR by performing evaluations on
the real and on the simulated system with a ratio 1 : h (i.e.,
1 experiment on the real system every h experiments in the
simulator). The result is obvious in the ideal case FR = FS

and also when the derivatives of the two functions FR and
FS have the same sign for each point, but it works well even
if this condition is not met.

To better describe the algorithm and its properties let us
present an example in one dimension. We consider two one
dimensional functions FR(x) and FS(x) and apply the above
algorithm. FR(x) is the fitness function of the real system,
i.e., the one we want to use only rarely, and FS(x) is the
fitness function of the simulated system, i.e., the one we want
to use most of the times during the learning process. We have
experimentally determined that a good value for σ depends
on the random step used to produce mutations in the genetic
evolution step. In these tests we set the random step of the
genetic algorithm to 0.2 and σ = 0.6. However, we have
similar behaviors, but with different convergence rates, using
σ varying from 0.1 to 3.0. We use n = 10 individuals that
are uniformly selected in the interval [−20, 20] and h = 10.

Fig. 2. Algorithm Execution Example in 1-D

Figure 2 shows an example of execution of the algorithm
on 1-D functions. The red and green plots represent FR and

FS functions respectively. The bold blue plot shows F i
C after

250 iterations (but only 25 iterations with the real function
FR), while the lower function shows ∆F i. As shown in the
figure, the algorithm approximates FR with F i

C near one of
its local maximum, but also near the local maximum of FS .
In fact, in the early iterations values that maximizes FS , but
not FR, are retrieved, and thus correction is needed to enable
the algorithm to explore other areas of the search space.

Fig. 3. Learning process for the example in 1-D

In Figure 3 the evolution of the learning system is shown.
The red plot shows the value of F i

C for the best individual
at each iteration, while the green bold plot shows the value
of F i

R that is computed every 10 iterations. The figure
shows how the function F i

C approximates F i
R, reaching

its local maximum. The lower blue function instead shows
the learning evolution obtained with the same number of
experiments on real data, but without the simulation ex-
periments interleaved. The figure illustrates the advantage
of using simulated experiments and the effectiveness of the
correction function ∆F i computed in the algorithm. It is
also evident from this example that the best solution obtained
by considering only FS gives a poor result on FR, due to
an overfitting to the simulated function. Finally, notice also
that good solutions are obtained since the early stages of
the learning process. For example, in the figure we can see
that a good solution is already obtained after 60 iterations (6
iterations on real data).

IV. IMPLEMENTATION OF THE LEARNING PROCESS

The learning process we have chosen for the experiments
described in this paper is based on the development of a
genetic algorithm for optimizing a fuzzy control system.
This approach has been largely used in the literature (see
for example [12], [15]) and has produced good results in the
task of biped locomotion. However, it is interesting to point
out that the approach described in the previous section could
be also applied with other base learning algorithms.

Two behaviors have been implemented and tested: walking
and kicking. They have been extensively tested in the sim-
ulator described in the next section, which does not require
human assistance and thus allows for performing extensive
learning processing.

The fuzzy controllers designed for such behaviors have
been optimized by using a genetic algorithm. In the exper-
iments reported below we used a population of 20 individ-
uals. For each generation, the best individual is replicated
(elitism), 70% of the individuals are obtained by crossover,
the remaining by mutation. Individuals for crossover and
mutation are probabilistically selected considering the fitness
functions. In order to speed up the process, we found useful
to select only those individuals that are above 50% of the
fitness value of the best individual. Crossover is implemented
with a random selection of the parameters from each of the
two individuals, while mutation is implemented by adding a
small random value to the parameters. The initial generation
is computed by randomizing an initial set of parameters that
allows for a stable, but not very effective behavior.

A. Implementation of walking

The fuzzy control system that we have used to implement
a walking gait is based on an oscillation function

Jb(t) = Asin(2πω t)

where Jb is the joint of the torso that makes the robot swing
left-to-right, A and ω are parameters of the learning process.
The value of Jb determines three different fuzzy variables:
body left, body center, body right (see Figure 4).

Fig. 4. body left, body center, body right fuzzy variables.

In addition, 6 control variables are used for controlling 6
joints: 2 for the leg, 2 for the foot, 1 for the torso (bending
ahead), and 1 for the arm. The fuzzy rules are designed to
behave as follows: when the body is on the center, then the
joints move to a stable standing position; when the body is
on the left, then the right leg and the left arm are moved
forward (right step forward); when the body is on the right,
then the left leg and the right arm are moved forward (left
step forward).

More specifically, in our implementation, each rule
has a fuzzy variable (either body center, or body left, or
body right) as the antecedent and a pair < control variable,
target value > (related to one of the above joints) as the
consequent. The evaluation of the antecedent of the fuzzy
rule determines the gain that is applied to the control variable
to reach the target value specified in the rule.

A genetic algorithm has been used to optimize the param-
eters X of such a fuzzy controller. As fitness function, we
used the distance walked by the robot during an experiment
with a constant time slot (in our case, 20 seconds) with a
penalization for walking gaits that are not straight:

Fig. 5. Examples of walking.

F (X) = xe − |ye|

where (xe, ye) is the position reached after the experiment,
x is the axis in the direction of motion, y is orthogonal to it,
and (0, 0) is the initial position of the robot. If the robot falls
down during an experiment the fitness function is decreased
to zero and this individual will not be part of selection in
the next generation.

Examples of execution of the walking motion on both the
robot and the simulator are shown in Figure 5.

B. Implementation of kicking

The implementation of the kicking behavior is based on
the oscillation function

Jb(t) = Asin(2πω t)

that controls the swing left-to-right of the body.
The fuzzy variables for this behavior include those rep-

resenting the position of the body (body center, body left,
body right) and those representing the position of the kicking
leg (leg backward, leg straight, leg forward). The control
variables are again a subset of the joints that will be operated
by the behavior.

The fuzzy rules are designed in such a way to swing the
kicking leg when the body is in the appropriate position;
depending on the position of the leg, other rules determine
the position of the knee, the ankle and the arm joints as well.

As in the previous case all the parameters of the fuzzy
rules are optimized using a genetic algorithm. The experi-
ments have been performed by putting the robot close in front
of a soccer goal and with a ball just ahead the kicking foot.
The fitness function used in this case measures the velocity
of execution of the behavior, penalizing those executions that
make the robot fall down or that do not score the goal.

Examples of execution of the kicking action on both the
robot and the simulator are shown in Figure 6.

V. EXPERIMENTS

A. The Robovie-M humanoid platform

Robovie-M is a small humanoid robot platform pro-
duced by the Japanese company VStone1. In this work,

1www.vstone.co.jp

Fig. 6. Examples of kicking.

the Robovie-M version 2 was used. The size of the robot
are 290x240x65mm, and its weight is 1.9 Kg. Robovie-M
version 2 has 22 degrees of freedom (DOF) activated by 22
Sanwa servomotors (six in each leg, four in each arm, and
two in the trunk) . The motors are driven by three Microchip
PIC16F877 controlled by a Renesas CPU H8/3684 working
at 16MHz. The board mount a two axis accelerometer and a
RS232 serial port. The firmware controlling the H8/3684 is
proprietary.

The control board’s power supply is given by five AA
batteries of 1.2 V and 2300 mA that gives a power supply
at 6 V with peak-current of 6 A.

B. The USARSim Simulator

USARSim2 is a realistic simulator developed by the Urban
Search and Rescue (USAR) RoboCup community [4], that
has been recently extended with the support for legged robots
[16]. It is intended as a research tool for the study of human-
robot interaction (HRI) and multi-robot coordination. This
robot simulator is based on the industrial Unreal Engine
game engine released by Epic Games with Unreal Tour-
nament 2004. The simulation engine and its development
tools can be inexpensively obtained by buying the game.
Unreal Editor enables the user to rapidly develop objects
and environment. Unreal Script, an ad-hoc script language,
enables the user to control the behavior of the simulated
objects.

Using USARSim problems like modeling, animation, and
virtual environment’s rendering are automatically solved.
High quality 3D rendering at low cost is made possible
by building the simulation on top of a game engine and
this solution outperform open-source simulation projects.
USARSim has the advantage that a full effort can be devoted
to the robotics-specific tasks of modeling platforms, control
systems, sensors, interface tools and environments. These
tasks are in turn, accelerated by the advanced editing and
development tools integrated with the game engine leading
to a virtuous spiral in which a widening range of platforms
can be modeled with greater fidelity in less time. The current
release of the simulation consists of: various environmental
models (levels), models of commercial and experimental
robots, and sensor models. The high quality of the 3D

2usarsim.sourceforge.net

rendering of USARSim enables it to be used also to test
image processing algorithms to be run by the robot in
simulation. In fact, USARSim can generate views of the
environment as exocentric view (i.e. an external camera
observing the robot, like in Fig.1(b)) or in egocentric view
(i.e. the camera mounted on the robot).

In a previous work, we showed that USARSim is a
good simulator for small humanoid robot platforms [5]
and that the simulated robot approximates quite well the
behavior of the real robot, as can be seen in the video avail-
able at the link http://www.dei.unipd.it/˜emg/
downloads/penaltyComparison.wmv.

C. Experimental Results

Fig. 7. Learning process with interleaved simulator and real experiments.

In this section we report a learning session for the walking
behavior of the above presented robot. Genetic Algorithms
have been used as the base learning technique and the
algorithm proposed in this paper for interleaving simulated
and real experiments has been used. Genetic Algorithms are
configured as described in Section IV, and the ratio between
real and simulated experiments has been set to 1:5.

Figure 7 shows the value of the fitness function (distance
in [mm] moved in 20 seconds) over the number of iterations
of the learning process. We have performed 24 iterations (20
on the simulator and 4 on the real robot); for the simulated
experiments we evaluated 20 individuals for each generation,
while for the real robot only the best 10 individuals have been
considered. Therefore, we performed a total of 480 runs on
the simulator and only 40 runs on the real robot. The red
plot in the Figure shows the corrected fitness function, while
the green dots the values obtained with the experiments on
the real robot. The best solution after these iterations has a
fitness value of 512 mm.

To demonstrate the effectiveness of our approach, we
have determined two other measures: 1) the speed-up in the
learning process with respect to using only real data (with
the same number of runs); 2) the overfitting if using only
simulated data.

For the first point, we have run genetic algorithm from
the same initial parameters setting used before, running 4
generations of 10 individuals (i.e., 40 runs in total). The

fitness value of the best solution has been 130 mm, so the
speed-up for this experiment has been 3.94.

For the second point we run the same number of iterations
(20) with simulated data only. We obtained in this way a
value for the best fitness of 668. However, when evaluating
this solution on the real robot we had a slightly worse result
than the one given with the interleaving method: 488 mm.
This can be explained by a specialization (overfitting) of
the solution to the simulated model of the robot and the
environment, that instead is not present when the corrected
fitness function is used.

VI. CONCLUSIONS AND FUTURE WORKS
In this paper we have presented an algorithm and exper-

imental results for learning behavior of a complex system
using both the real device and a simulated environment. In
particular, we focus our work on biped locomotion for a
humanoid robot and we have used a Robovie-M humanoid
robot and its simulated model in USARSim to perform the
experiments. The proposed approach makes use of inter-
leaved experiments from a simulator and from the real robot
aiming at obtaining good results minimizing the number
of experiments on the real robot. As shown by reported
experiments, both on a synthetic simple problem and with a
real robot, the proposed method allows for effective speed-up
of the learning process using a simulator, but at the same time
it avoids overfitting to the simulated model by periodically
computing a correction evaluation function that takes into
account differences between the simulated environment and
the real robot.

As future work, we plan to perform a more systematic
evaluation of the proposed approach also using other robotic
platforms, e.g. AIBO robots, for which we have both the real
robot and the simulated model. Furthermore, it is interesting
to study in more detail the properties of the developed
algorithm, and in particular to provide sufficient conditions
on the functions FR and FS to find with the proposed
algorithm a local maximum of FR.

REFERENCES

[1] A. di Noi A. Manni and G. Indiveri. A control architecture for
dynamically stable gaits of small size humanoid robots. Proc. Of
the 8th International IFAC Symposium on Robot Control SYROCO
06, Bologna, Italy, (1), September 6-8 2006.

[2] P. Abbeel, M. Quigley, and A. Y. Ng. Using inaccurate models
in reinforcement learning. In Proc. of International Conference on
Machine Learning (ICML), 2006.

[3] J. Bongard and H. Lipson. Nonlinear system identification using
coevolution of models and tests. IEEE Transactions on Evolutionary
Computation, 9(4):361–384, 2005.

[4] S. Carpin, M. Lewis, J. Wang, S. Balakirsky, and C. Scrapper.
USARSim: A robot simulator for research and education. In Proc.
of Int. Conf. on Robotics and Automation (ICRA), 2007.

[5] N. Greggio, G. Silvestri, S. Antonello, E. Menegatti, and E. Pagello. A
3d model of a humanoid robot for usarsim simulator. In Proceedings
of the First Workshop on Humanoid Soccer Robots, Genoa, ITALY,
pages 17–24, December 2006.

[6] M. Hebbel, R. Kosse, and W. Nistico. Modeling and learning walking
gaits of biped robots. In Workshop on Humanoid Soccer Robots, 2006.

[7] Daniel Hein, Manfred Hild, and Ralf Berger. Evolution of biped
walking using neural oscillators and physical simulation. In RoboCup
2007: Proceedings of the International Symposium, LNAI. Springer,
2007.

[8] Th. Hemker, H. Sakamoto, M. Stelzer, and O. von Stryk. Hardware-
in-the-loop optimization of the walking speed of a humanoid robot.
In CLAWAR 2006: 9th International Conference on Climbing and
Walking Robots, pages 614–623, Brussels, Belgium, September 2006.

[9] H. Lipson and J. Bongard. An exploration-estimation algorithm for
synthesis and analysis of engineering systems using minimal physical
testing. In Proc. of ASME Design Engineering Technical Conferences
(DETC), 2004.

[10] I.W. Park, J.Y. Kim, and J.H. Oh. Online Biped Walking Pattern
Generation for Humanoid Robot KHR-3 (KAIST Humanoid Robot-
3: HUBO). Humanoid Robots, 2006 6th IEEE-RAS International
Conference on, pages 398–403, 2006.

[11] Julio C. Pastrana Perez. Gait optimization for humanoid robots.
Master’s thesis, Albert-Ludwigs-Universitat Freiburg Institut Fur In-
formatik, 2005.

[12] D.T. Pham and D. Karaboga. Optimun design of fuzzy logic controllers
using genetic algorithms. Journal of Systems Engineering, 1:114–118,
1991.

[13] E. Schuitema, DGE Hobbelen, PP Jonker, M. Wisse, and JGD Karssen.
Using a controller based on reinforcement learning for a passive
dynamic walking robot. Humanoid Robots, 2005 5th IEEE-RAS
International Conference on, pages 232–237, 2005.

[14] R. Tedrake, TW Zhang, and HS Seung. Stochastic policy gradient
reinforcement learning on a simple 3D biped. Intelligent Robots
and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ Inter-
national Conference on, 3, 2004.

[15] J. Velasco and L. Magdalena. Genetic algorithms in fuzzy control
systems. In G. Winter, J. Periaux, M. Galan, and P. Cuesta (Eds.),
editors, Genetic Algorithms in Engineering and Computer Science,
pages 141–165. John Wiley & Sons, 1995.

[16] M. Zaratti, M. Fratarcangeli, and L. Iocchi. A 3d simulator of multiple
legged robots based on usarsim. In Proc. of RoboCup Symposium,
2006.

