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Abstract— Humanoid soccer robots are increasingly becom-
ing more autonomous as sophisticated approaches are being
developed for challenges in vision, motion and team coordi-
nation. The stated goal of the RoboCup initiative is to beat
the human soccer champion team by 2050 [1]. In order to
achieve this goal, it is essential to enable the robot to fully
utilize the information extracted from the available sensors.
In the standard platform league of RoboCup [2], one major
challenge is the ability to detect and avoid the mobile obstacles
i.e. the other robots on the field. This paper presents an image
gradient-based scheme to efficiently and reliably characterize
the obstacles in the environment. In addition, information
extracted from color images and range sensors is incorporated
to build a robust obstacle model. Furthermore, a potential field-
based method is used to navigate safely in the presence of
obstacles. All algorithms are implemented and tested on the
Aldebaran Nao [3] robot platform.
Keywords: Visual learning, Safe navigation, Humanoid robots.

I. INTRODUCTION

The ready availability of high-fidelity sensors at moderate
costs [4] has resulted in the deployment of mobile robots
in real-world applications such as disaster rescue, medicine
and navigation [5], [6], [7], [8]. Each sensor mounted on
a mobile robot may however provide information about
different regions of the robot’s environment, in different
formats and with different levels of uncertainty. A color
camera, for instance, is a high-bandwidth source of infor-
mation compared to a laser range finder. The visual input
is however more noisy and the corresponding information
processing algorithms are computationally expensive. As a
result, many mobile robot applications base their decision-
making predominantly on other sensory inputs (e.g. range
information, GPS etc) [6], [8]. Such approaches that do not
fully utilize the available information are likely to be at a
disadvantage in dynamic environments.

There has been considerable interest in recent years on
the development of humanoid robots, particularly in the
robot soccer community [2] and the human-robot interaction
scenarios [9]. Humanoid platforms can be deployed in prac-
tical settings where they can learn from and interact with
humans. The research on humanoid robots has resulted in
sophisticated methods for challenges such as motion control
and dynamic balancing [10], [11]. Within the humanoid
soccer setting, researchers have focused on challenges in
vision, motion and team coordination [12], [13]. However,
the ability to effectively use the available information is still
a challenge on robots deployed in dynamic environments.

In the standard platform league of RoboCup [2], teams
of three humanoid robots play a competitive game of soccer
on an indoor soccer field. The dynamics of the game make
it important for the robot to detect and avoid the moving
obstacles i.e. other robots on the field. Unreliable commu-
nication makes it difficult to reliably avoid the teammates,
making obstacle detection and safe navigation all the more
challenging. Most current methods detect obstacles using
the range information or color-coded image regions [12].
Such methods do not fully exploit the available information,
especially the information encoded in camera images, and as
a result do not result in robust performance.

Computer vision research has produced methods that use
scale, orientation and affine invariant image gradient features
to characterize objects in images [14]. However, these so-
phisticated approaches are either computationally expensive
or do not provide the high reliability required for mobile
robot application domains. Considerable research has also
been done in the field of safe coordination and navigation on
individual robots and mobile robot teams, using information
from a variety of sensors [17], [18]. In parallel, sensor fusion
has been studied in fields such as networks and multiagent
systems [20], [21]. However, applying the existing strategies
to mobile robot domains requires heuristic constraints and
manual supervision [8].

This paper draws from the existing work in the related
fields to make the following contributions:
• we incorporate a combination of an efficient gradient

feature detector (MSER [22]) and a reliable feature de-
scriptor (SIFT [14]) in order to characterize the target
objects reliably and efficiently;
• we enable the robot to use learned error models for the

processing schemes, and our existing information fusion
scheme [23], to build robust obstacle models;
• we incorporate a potential field-based obstacle avoidance

scheme, which uses the obstacle models to navigate safely
in the presence of obstacles;

All algorithms are tested on a humanoid robot platform
(Aldebaran Naos [3]) in the robot soccer framework.

The remainder of the paper is organized as follows.
Section II presents the proposed approach, including the
image gradient feature-based obstacle characterization, the
information fusion scheme, and the proposed navigation
scheme. The experimental setup and results are described
in Section III, followed by a brief review of related work
(Section IV) and the conclusions (Section V).
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II. PROPOSED APPROACH

This section first describes the test platform and the
challenge task addressed in this paper. Next, we describe
the proposed approach for building robust obstacle models
that are used for safe local navigation.

A. Test Platform and Challenge Task

The Aldebaran Nao humanoid robot platform [3] is used
as the test platform in our experiments. The 58cm tall robot
has 23 degrees of freedom; five in each arm and leg, two
in the head, and one at the pelvis. The primary sensors
are the monocular color cameras in the forehead and nose,
though only one camera can be used at a time, i.e. stereo
capabilities do not exist. Each camera has a 58o diagonal
field of view and a maximum resolution of 640 × 480;
320 × 240 or 160 × 120 images can be used for faster
processing. In this paper, the 160 × 120 resolution images
are used for experimental analysis. There are two ultrasound
sensors in the chest, one each on the left and the right
with a 60o field of view. The robot also has accelerometers,
bump sensors, microphones, loudspeakers, LEDs, and Wi-
Fi to communicate with other robots or an off-board PC.
However, all processing for vision, locomotion, localization
and team coordination is to be performed in real-time (30Hz)
on board the robot, using the x86 AMD GEODE 500MHz
CPU that runs embedded Linux.

One application domain for the Nao is RoboCup, an inter-
national research initiative with the stated goal of creating,
by the year 2050, a team of humanoid robots that can beat
the champion human team in a game of soccer on an outdoor
soccer field. The Standard Platform League [2] of RoboCup
has teams of Naos (three per team) playing a competitive
game of soccer on a 6m× 4m indoor soccer field. Figure 1
shows some images of the domain.

Fig. 1: The Nao [3] robot and the robot soccer field.

The robot soccer framework presents many of the chal-
lenges that need to be addressed for deploying a humanoid
robot in the real-world (e.g. vision, motion, localization and
team coordination), while providing a moderate amount of
structure that makes the domain tractable to solutions. One
significant challenge in the domain is the safe navigation
in the presence of obstacles. On the robot soccer field, the
other robots (opponents and teammates) are the “obstacles”.
Collision with other robots can cause physical damage and
provide the opponents with a major advantage since the
rules of the game penalize robots that collide with each
other. Teammates are considered obstacles despite the Wi-Fi
capability since the communication is delayed and unreliable.

B. Image Gradient-based Obstacle Detection

In recent computer vision literature, features based on
local image gradients have been used extensively to charac-
terize and hence recognize objects of interest [14], [15], [22].
These approaches are aimed at being robust to one or more
factors such as scale, orientation, affine transformations, illu-
mination and viewpoint. Typically there are two components
in these approaches: a detector that uses second-order image
gradients to extract small image regions (called keypoints)
that are consistent across variations in the factors of interest,
and a descriptor that associates each extracted region with
a signature that identifies its appearance compactly. Objects
of interest can be represented by a database of such feature
descriptors extracted from a set of images.

Recent experimental comparison of the existing detectors
and descriptors [24] has shown that the MSER (Maximally
Stable Extremal Regions) detector [22] provides the most
efficient performance by identifying a small set of unique
regions to characterize the target objects. In addition, the
SIFT descriptor [14] uses a 128-dimension feature vector
to represent each of these distinctive regions, and provides
the most reliable object recognition performance. The default
detector for SIFT is the DoG (Difference of Gaussian)
operator that is implemented in scale-space, while MSER
finds elliptical covariant regions on level sets of the image.
Figure 2 shows images with the keypoints detected using the
MSER approach and the default DoG+SIFT technique. The
images show that MSER finds fewer i.e. more distinctive
image regions. In this work, we therefore use a combination
of these two approaches to represent the target objects i.e.
the obstacles on the field.

Fig. 2: Keypoints detected with DoG+SIFT: (a),(c); and MSER:
(b),(d)—MSER finds more distinctive keypoints.

A DoG detector represents each detected region using
four parameters: (x, y, σ, θ); (x, y) denote the location of
the distinctive image region, σ represents the scale-space,
and θ is the orientation. The MSER detector uses five
parameters: (x, y, a, b, c); (x, y) denote the location, (a, b)
are the axes of the ellipse representing the distinctive region,
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and c represents the ellipse’s orientation. The scale space for
a DoG operator is defined as:

L(x, y;σ) = G(x, y;σ) ∗ I(x, y) (1)

It is the convolution of a variable-scale Gaussian G(x, y;σ),
with an input image I(x, y). The parameter σ defines the
range of the mask and hence described the range of the
detector. There are two ways to transform the MSER rep-
resentation to an equivalent DoG detector:

σ =
{
K ·

√
(a2 + b2) option1

max(a, b) option2
(2)

Section III-B experimentally compares these options. How-
ever, the orientation of MSER cannot be used for DoG where
θ is computed from the orientation histogram in the Gaussian
smoothed image (Equation 1). The equivalent orientation in
scale-space is hence computed after first computing σ as
described above.

The obstacle detection proceeds as follows. In an initial
training phase, the obstacle regions in input images are
extracted and characterized using a small set of unique
MSER features. The equivalent DoG representation of these
regions is obtained and the corresponding SIFT descriptors
are found to build the training database of the obstacles.
A similar database can be built for the background i.e.
environment. For any test image, an image region with a
sufficient number of features similar to the features in the
training database of obstacles can be labeled as the location
of an obstacle. Rectangular bounding boxes are constructed
around the image regions corresponding to the detected
obstacles. The size of each bounding box (i.e. height and
width in pixels) and its offset with respect to the image
center are computed. Given the known size of the robot, this
information in the image space can be used in geometric
i.e. projective transformations to compute the distance and
bearing of each detected obstacle relative to the robot.

C. The Overall Algorithm

The Nao robot has multiple sensors and hence multiple
information processing schemes. This paper considers the
following processing schemes:
1. Ultrasound (US): Each ultrasound sensor computes object
distance up to a maximum of 150cm. The bearing informa-
tion is limited to object presence to the left and/or right.

2. Vision-Color (VC): Since many objects in the domain (e.g.
robots, goals) are color-coded, color segmented regions in
the input images can be used to detect objects.

3. MSER-SIFT (VM): Described in the previous section.
In the robot soccer scenario, each robot has a uniform
consisting of regions of a specific color (red or blue) arranged
in a specific pattern—see the color patches on the head,
shoulder and chest of the robots in Figure 1). VC can
detect obstacles by color-segmenting the image and detecting
specific patterns of image regions of suitable color. Distance
and bearing are computed using the same transforms used
for the image gradient-based detection (i.e. VM). However,
VC only works up to a distance of ≈ 2m (as against ≈ 4m

Algorithm 1 Multisensor Information Merging
Require: : Learned models that predict the error in distance

and bearing measurements from each information source.
Require: : Learned MSER-SIFT model of the obstacles and

background.
repeat
UpdateExistingEstimates()
{dus, dir} = CurrentObstaclesus()
{dc, θc} = CurrentObstaclesvc()
{dm, θm} = CurrentObstaclesvm()
ResolveCurrentEstimates()
MergeWithExistingEstimates()

until end of the game

with VM), and from specific viewpoints where the uniform
patterns are visible. In addition, both vision-based schemes
compute distance by analytically comparing the known ob-
ject size and the detected size in image pixels. Noise in
color segmentation or feature detection can hence introduce
errors in distance computation. In terms of computational
complexity, US and VC are inexpensive operations, while
VM is computationally expensive to execute on the robot.
Typically, heuristic constraints would be imposed on when
(and how) the information from each of these sources should
be used. Instead, we incorporate an instance of our existing
work that uses learned error models of the individual process-
ing schemes to robustly merge the available information [23],
as summarized in Algorithm 1. The individual steps of the
algorithm are described below.

In order to maintain obstacle estimates across several
frames, each obstacle estimate is associated with a Kalman
Filter [25]. The first step in Algorithm 1 is the time-update
step of Kalman filters (UpdateExistingEstimates(), line
2) that adjusts the existing estimates to account for the
robot’s motion since the previous update. This step also
removes estimates that have not been updated for some
time. Each processing scheme is then used to compute
the distances and bearings of the obstacles in the cur-
rent image (CurrentObstacles(), lines 3-5). As men-
tioned earlier, the ultrasound sensor can only provide di-
rectional bearing (left, right or both), and the vision-based
schemes provide noisy distance measurements. The next step
(ResolveCurrentEstimates(), line 6) groups similar dis-
tance and bearing measurements provided by the processing
schemes in the current frame. This grouping is based on
the expected errors in the measured values (see Section III-
A). For instance, if the difference between the bearings
computed using VC and VM is more than the expected error
in the individual measurements, these values are not grouped
together. A single estimate is then obtained for the values
within each group:

dj =
∑
i

wjd,id
j
i (3)

θj =
∑
i

wjθ,iθ
j
i
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where the distance and bearing to the jth obstacle in the
current frame ( dj , θj) are the weighted average of the
values from the individual schemes (i ∈ {US, V C, VM}).
The weights associated with the values obtained from the
ith source (wd,i and wθ,i) are based on the learned models
that predict the error in distance and bearing measure-
ments. The individual and merged estimates from the current
frame are matched with estimates from prior frames that
are being tracked using Kalman filters. This matching is
accomplished using the same grouping procedure used in
line 6 above. The next step is the “measurement-update”
step of Kalman filters that merges the matched estimates
(MergeWithExistingEstimates(), line 7). It could be
argued that the measured values and the predicted errors
(from each processing scheme) can be input directly to the
Kalman filters. However, the current measurements still need
to be matched with the existing estimates. Furthermore, it
would require appropriate manual tuning of the Kalman
filter’s noise models.

D. Robot Navigation

Once estimates have been obtained for the obstacles in
the environment, the robot needs a scheme for safe local
motion. This objective is achieved by incorporating a variant
of the potential field method that has been used in other robot
applications (e.g. [19]). Typically, such approaches overlay a
potential field over the environment. The functional form of
the potential field assigns values to the environmental regions
covered by the field. The gradient of the potential field can
hence be followed to reach a local maximum or minimum
of the function. In a multirobot setting, the potential field
can be posed as a sum of linear components, with each
component representing the heuristic information about an
individual player’s behavior.

Since the goal is to achieve safe local motion in the
presence of moving obstacles, we establish local potential
fields centered at each obstacle estimate i.e. the estimated
locations of obstacles relative to the robot. We model each
potential field as a 2D Gaussian whose axes correspond to the
expected error in the corresponding obstacle estimate. The
potential field hence assigns a repulsive force whose value is
maximum at the center of the field and decreases rapidly as
we move away from the estimated location of the obstacle.

Fig. 3: Obstacle avoidance using Potential Fields.

Consider, for example, the situation shown in Figure 3.
Each annular ring in Figure 3 represents a region in space
with the same approximate value of the repulsive force—
the darker regions close to the obstacle location represent
a larger repulsive force, while the brighter regions repre-
sents locations where the repulsive force is smaller. Such
a representation introduces hysteresis and prevents sudden
transitions in robot motion. The robot has to move from its
initial location to a target location (the “Goal” in Figure 3).
In the absence of the obstacle, the robot would pursue a
straight line path to the target location. However, given the
presence of an obstacle along the intended path, the direction
of motion of the robot is a vector sum of the intended
direction and the direction of the repulsive force exerted by
the obstacle. The relative strength (i.e. magnitude) of the
vectors is based on the relative importance of avoiding the
target and achieving the target location—these values can
be tuned to provide aggressive or defensive robot behavior.
When the robot or the obstacle moves (a common occurrence
on the robot soccer field), the obstacle estimates are updated
to account for the relative motion (based on the Kalman filter
update in Algorithm 1). The updated obstacle estimates will
lead to a corresponding change in the location and magnitude
of the potential fields.

With multiple obstacles on the field, the robot’s motion
is affected by the potential fields corresponding to all the
obstacles. In the current implementation, there is a fixed
strong bias towards reaching the target location as soon as
possible. However, this objective can also be achieved by
assigning an attractive field to the robot’s target location.
Similar constraints can also be imposed to ensure that the
robot does not walk off the soccer field. The net effect of
the proposed approach is that the robot is able to move to
its target location while avoiding obstacles along its path.

III. EXPERIMENT SETUP AND RESULTS

This section first describes the approach to learn the
required object models and error models for the information
fusion scheme. Next, we briefly describe the parameter
tuning performed in order to characterize obstacles based
on image gradient features. We then analyze the ability of
the proposed algorithms to provide safe local navigation.

A. Model Learning

In order to use Algorithm 1 to effectively estimate the
relative position of the obstacles, we need models that
predict the measurement errors of the individual processing
schemes. Measurements with a larger expected error will
have proportionately lower weights in Equation 3.

Since the robots are the obstacles in these experiments,
they are placed at different known positions on the field.
The robot moves through a sequence of poses (posi-
tion+orientation) that it can reach with high accuracy—
for instance the points on the center line of the field. For
localization, the robot uses the standard procedure of color
segmenting the image, detecting objects of specific colors,
and feeding the measured distances and angles to a particle

Proceedings of the 4th Workshop on Humanoid Soccer Robots
A workshop of the 2009 IEEE-RAS Intl. Conf. On Humanoid Robots (Humanoids 2009),

Paris(France), 2009, December 7-10
ISBN 978-88-95872-03-2

pp. 1-8



filtering algorithm [25], [26]. When the robot reaches each
pose in the sequence, it compares the measured distance
and bearing values to the obstacles against the true values.
The robot uses the known positions of the obstacles to
compute the “ground-truth” i.e. the true measurements. The
difference between the measured and ground-truth values
provides the error values. The error values are then used
to train a polynomial function approximator that models the
measurement error as a function of the measured distance
(or bearing).

In addition to the error models, the robot needs gradient
feature-based models that characterize the obstacles. While
collecting the data for the error models, the robot can project
the known positions of the obstacles within the field of
view of the camera to the image. The MSER-SIFT features
extracted from the appropriate image regions provide the
training database of features that represents the obstacles (i.e.
robots), and a similar database is created for the background.

A key requirement of the proposed learning scheme is the
ability to localize accurately to the poses along the intended
sequence. This requirement is satisfied by allowing the robot
to walk slowly and make finer adjustments when it gets
closer to each desired pose. Though the robot walks as fast as
possible during games in order to meet the time constraints
on reaching the desired pose, there are no such constraints
in the initial learning phase.

B. Parameter Tuning

In order to get the best performance from the MSER-SIFT
technique, certain parameters have to be tuned. In order to
tune the parameters, a training set is constructed based on
features extracted from 30 images each of the obstacles and
the background. This set includes images of obstacles at
different scales and orientations. Some of the image regions
in the training set were labeled manually, while regions
in images collected during the model learning phase were
labeled automatically. A validation set is constructed using
features extracted from a separate set of 50 images each with
and without obstacles.

As mentioned in Section II-B, the transformation from the
MSER representation to an equivalent DoG representation
requires the computation of σ, which can be done in two
ways (Equation 2). For option 1, object models learned
from the training set are used to compute the classification
accuracy over the validation set for various values of K.
Table I reports the best classification results, which are
obtained for K = 1.3. Table II shows the best classification
performance obtained with option 2, over the same validation
set—there is no parameter tuning involved in option 2. The
tables are “confusion matrices” that show the true positives
(obstacles classified as obstacles–Obs|Obs), true negatives,
false positives and false negatives. The best classification
result corresponds to the case where the robot detects ob-
stacles accurately and does not detect any false positives.
Based on this criterion and the experimental results, we
conclude that option 1 (with K = 1.3) provides better overall
performance. Hence it is used in all subsequent experiments

for transforming the MSER representation into the equivalent
DoG representation.

aaaaaaa
Actual

Observed
Obs NObs

Obs 92.0 8.0
NObs 12.7 87.3

TABLE I: Classification (%) with K = 1.3 in Equation 2.

aaaaaaa
Actual

Observed
Obs NObs

Obs 93.0 7.0
NObs 19.3 80.7

TABLE II: Classification (%) using max() in Equation 2.

When recognizing obstacles in the images, a nearest
neighbor approach is used—features extracted in the images
are compared against the training database of features. If
the number of image features that match the features in
the training database of obstacle features is more than a
threshold, the corresponding image region is recognized as
the location of an obstacle. In order to tune this threshold,
the features in the training database are once again used to
compute the classification accuracy over the validation set
for various values of the threshold. Table III summarizes the
best classification result, which is obtained for a threshold
value of 5.

aaaaaaa
Actual

Observed
Obs NObs

Obs 85.0 15.0
NObs 13.0 87.0

TABLE III: Accuracy (%) when number of matched features = 5.

Figure 4 shows a pictorial representation of the (true positive)
classification accuracy over the validation set as a function
of the number of matched features. Similar graphs were
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Fig. 4: Classification Accuracy vs. the number of matched features.

generated for other categories in the confusion matrix, and
based on these experiments, the value of this threshold was
set as 5 for all subsequent experimentation.
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C. Experiment Results

Our proposed approach was designed to achieve the fol-
lowing: (a) to compute robust estimates of the obstacles by
effectively merging the image gradient-based representation
with other processing schemes based on visual and range
information; and (b) to use the computed estimates in order
to navigate safely in the presence of obstacles. This section
describes the experiments conducted to evaluate the ability
of the proposed algorithms to achieve these goals.

For evaluating the MSER-SIFT approach, we created a
separate test database from a set of 300 images, which
consist of 150 images with obstacles and 150 images without
obstacles. Since local invariant features have been used
extensively in computer vision [24], the proposed approach
is compared against the default SIFT approach and a recently
developed approach (FERN) that is reported to be very
efficient [27]. These approaches were evaluated using the
same training and test set of images used for evaluating the
MSER-SIFT approach. All methods were evaluated on the
basis of their accuracy and running time. Specifically, 200
images were chosen at random from the test set, and the
process was repeated 10 times in order to obtain the results
tabulated in Tables IV, V.

Method Testing Time (msec) Training Time
MSER-SIFT 121.4± 35.3 86.5± 13.5 msec

SIFT 413.2± 72.1 153.7± 16.7 msec
FERN 40.7± 14.8 16.5± 0.3 sec

TABLE IV: Running times of different methods. MSER-SIFT takes
longer than FERN during testing but is significantly faster during
training.

Table IV shows that MSER-SIFT is significantly faster
than default SIFT, even though the training and test databases
of SIFT are pruned to remove similar features, as described
in [14]. MSER-SIFT performs better because it detects a
smaller set of unique features per image. The FERN [27]
classifier has a tree-like structure based on simple features
and is hence fast during testing. However, unlike MSER-
SIFT or SIFT, FERN takes several seconds per image to
model the classifier from the training set. This makes it
infeasible to make incremental revisions to the FERN clas-
sifier, a key requirement for a robot working in a dynamic
environment.

Method Obs|Obs(%) NObs|NObs(%)
MSER-SIFT 86.8± 6.14 87.2± 1.75

SIFT 64.6± 3.03 81.5± 4.7
FERN 85.6± 4.20 67.8± 4.47

TABLE V: Accuracy of the different techniques. MSER-SIFT
provides the best performance.

Table V compares the methods in terms of their classifica-
tion accuracy (true positives and true negatives). The MSER-
SIFT method provides the best overall accuracy in terms of
recognizing obstacles and rejecting non-obstacles correctly.
Based on Table IV and Table V, we observe that MSER-SIFT
provides high accuracy while still being efficient enough

Scheme Error Accuracy(%)
Distance (cm) Bearing (deg)

Ultrasound (US) 6.5± 3.6 −− 70
Vision-Color (VC) 17.5± 8.7 8.5± 4.0 81.5
MSER-SIFT (VM) 38.6± 41.0 1.8± 1.5 86.1
US + V C + V M 9.2± 5.1 4.8± 4.1 90.4

TABLE VI: The distance and bearing errors, and the detection
accuracy of the processing schemes.

to allow for incremental revisions of the training database.
MSER-SIFT was therefore used as the gradient feature-based
detection algorithm in all subsequent experiments.

Next, Table VI summarizes the distance error, bearing
errors and classification accuracy of the processing schemes
(US, VC, VM, US+VC+VM). Similar to the model learning
phase, obstacles were placed at different locations and the
robot walked through fixed poses. The errors were computed
by performing 15 trials over ≈ 20 different obstacle positions
where the obstacles were detected correctly. The accuracy
was computed over 400 images captured during this testing
process. As expected, the individual processing schemes
have different properties. For instance, VM provides accurate
bearings but has high distance errors with large variance
because sufficient features are not found in some test cases
to accurately determine the bounding rectangle. Similarly,
US measures distances accurately but has low classification
accuracy due to its narrow field of view. However, the
proposed merging strategy (final row in Table VI) provides
low errors and high classification accuracy. In order to trade-
off reliability against efficiency, MSER-SIFT is run once
every 10-20 frames (instead of every time-step), but the better
performance justifies this trade-off.

Fig. 5: Obstacle localization with MSER-SIFT—detected obstacles
are enveloped in pink rectangles.

Figure 5 shows images with the detected obstacles en-
veloped in rectangular boxes. The key result is that visual
information is exploited, and learned object representations
and error models are used to merge information reliably.

Finally, we evaluated the robot’s ability to navigate safely
using the potential fields overlaid on the estimated obstacle
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locations. In order to do so, we had the robot navigate
between a sequence of poses. During this motion, the robot
had to tackle the presence of obstacles that were randomly
placed in its path. The robot had to detect the obstacles
correctly, and suitably modify its path to avoid the obstacles.
Over a set of 100 such navigation attempts, the robot was
able to able to navigate safely and smoothly in 95 trials.
We label a trial as being successful if the robot avoids all
existing obstacles and does not respond to spurious obstacles.
In the trials where the robot fails, it detects a false positive
(i.e. an obstacle when it does not exist) for a few frames.
However, the robot soon corrects this error as it gets closer to
the perceived obstacle location—there is very little observed
difference in the motion of the robot. In other words, the
potential field-based system works fine.

IV. RELATED WORK

Section I discussed some existing methods for the chal-
lenges under consideration in this paper. This section briefly
reviews some more related work in the fields of computer
vision and robotics.

Computer vision research has provided several techniques
that have used local gradient features for problems such as
object recognition [28] and robot localization [29]. These
approaches are based on local descriptors designed to be
robust to factors such as scale, orientation, illumination and
affine transformations [14], [15], [16], [22], [30]. Most of
these methods are computationally expensive for robots or re-
quire significant manual training. Recent experimental evalu-
ation of these methods [24] has identified efficient detectors
(MSER [22]) and reliable feature descriptors (SIFT [14]).
More recent approaches such as FERN [27] have used
simpler features in order to achieve efficient operation, but
they require significant training time.

In parallel to the research in computer vision, mobile
robots are increasingly being used in a range of applica-
tions [6], [7], [8]. However, even state of the art robotics
applications [6], [8] under-utilize the visual information. In
addition, despite research on sensor fusion in related fields
such as networks and multiagent systems [20], [21], most
proposed techniques require manually specified heuristic
constraints when used on mobile robots.

On humanoid robots, extensive research has been per-
formed in recent years on challenges related to motion
control [10], [11] and stereo vision-based navigation [31].
Research in the RoboCup framework [32] and the humanoid
robots research community has resulted in several innovative
techniques that have enabled humanoid robots to move
towards robust and autonomous operation. However, as with
other mobile robot platforms, the available information is
not being fully exploited. For instance, within the standard
platform league of RoboCup, teams have typically been using
color-coded regions and range information to characterize
obstacles [12], [13]. As a result, safe local motion in a
dynamic environment in the presence of obstacles continues
to be a challenge.

Obstacle avoidance is a well-researched area on mobile
robots. The approach that we have used in this work, i.e.
artificial potential fields, have been used before for obstacle
avoidance [33] and multirobot coordination [19]. Potential
fields are appealing because they use simple local knowledge
about the environment—they are easy to maintain and update
in dynamic environments. This technique can therefore been
used to set up attractive and repulsive potentials to guide one
or more robots to the desired areas of the environment.

V. CONCLUSIONS AND FUTURE WORK

There has been considerable interest in recent years on the
development of humanoid robots, particularly in the robot
soccer community [2] and in the human-robot interaction
scenarios [9]. Though humanoid soccer robots are increas-
ingly becoming more autonomous as a result of the devel-
opment of sophisticated approaches for vision, motion and
team coordination, robust autonomous performance is still
an unsolved problem. One major challenge in the standard
platform league of RoboCup is the ability to detect and
avoid the obstacles on the field (i.e. the other robots). In
this paper, we present an image gradient-based scheme to
efficiently and reliably characterize the obstacles in the en-
vironment. The obstacle estimates obtained from the MSER-
SIFT scheme is merged with similar estimates obtained from
other processing schemes, using learned models that predict
the measurement errors of the individual processing schemes.
Furthermore, an artificial potential field is incorporated to use
the estimated obstacle locations, in order to enable the robot
to achieve safe local navigation.

We have shown that the proposed MSER-SIFT approach
uses a smaller set of unique features to characterize the
target objects, leading to better accuracy and efficiency.
Currently the robot learns the feature database of the target
object only in the initial training phase. However, it is
possible to enable the robot to revise the learned database
and add representations for new objects such that the robot
can incrementally improve its performance. Obstacles and
objects that are found to be stationary can also serve as
additional markers. These markers can be used by the robot
to localize when the known field markers (e.g. the goals on
the soccer field) are not visible.

One shortcoming of the MSER-SIFT technique is that the
computational complexity is high despite our optimizations.
The technique can be further optimized by only processing
relevant image regions (e.g. regions below the horizon).
The run-time can be further reduced by optimizing the per-
formance of other computationally expensive modules. For
instance, extended instruction sets found in the Nao processor
can be exploited to significantly reduce the computational
complexity of localization algorithms [34].

In this paper we have setup potential fields based on
the estimates obtained by merging the information extracted
from multiple sensors. We aim to extend this algorithm to a
multirobot setting where the robot also uses the information
communicate by its teammates. The robot can then build
a representation of the environmental regions that are not
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within its field of view. The challenge would be to account
for the uncertainty in the information communicated by
the teammates. Eventually, the goal is to enable robots to
autonomously learn environmental models, effectively merge
information obtained from different sources, and operate
robustly and safely in dynamic application domains.
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