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Abstract— Omnidirectional vision has already been used for
attitude and heading estimation, thanks to its wide field of
view. We adapt some existing methods in order to obtain a
simple vision system capable to estimate pitch, roll and yaw
angles for a real time application, using the parallel lines of the
environment. We test this visual gyroscope and visual compass
in some common environments to show that the proposed sensor
continues to work even if the number of detected lines is small.
We mount the catadioptric sensor in place of the head of a
humanoid robot and use the measured angles to stabilize the
walk, allowing the robot to keep a vertical position also if the
terrain changes its slope. In this way we also stabilize the robot’s
perception, reducing camera oscillations.

I. INTRODUCTION

It is very important for a humanoid robot to have some
methods of control in order to stabilize the gait in case of
loss of balance.

In general, the problem of estimate the camera motion
relative to the environment is fundamental to many vision-
based mobile robot applications, such as autonomous nav-
igation and localization. Common sensors, like gyroscopes
and accelerometers, are extremely sensitive to measurement
errors since the estimate of rotation angles is made through
double integration of sensed accelerations. This implies that
possible small errors integrated over time lead to a large
localization error over long paths. Standard GPSs have other
limitations, for example they are not able to work in many
indoor and urban environments. All these devices can be
affected by structural and mechanical fatigue, vibrations,
temperature change and electric interferences, that can cause
erroneous data readings [18].

In the last few years omnidirectional vision has started to
be used as a tool to support or replace the devices mentioned
before. Several methods have been proposed. In [9] they use
the image projection of 3D parallel lines to estimate the
Z-axis camera rotation angle. It is also possible to extract
the XY-plane translation from the optical flow, working with
omnidirectional [8] [15] or panoramic images [16]. In these
and other papers, they assume to work with wheeled robot
moving only along XY-plane and so the principal movements
are rotation and translation. Working with a humanoid robot,
we are instead interested in a visual device able to measure
pitch and roll inclination, as well as yaw angles.

Most of the works dealing with pitch and roll estimation
using omnidirectional sensors are related to small helicopters
and autonomous planes, belonging to the UAV (Unmanned
Aerial Vehicle) category. For cost and weight reasons, they

do not mount gyroscopes and accelerometers. The omnidi-
rectional sensor is used both to capture environment images
and to estimate the aircraft position. These vision-based
attitude computation methods generally use the skyline as
reference [12] [6]. However, the horizon line becomes an
inadequate feature in indoor environment because it does
not completely appear in the image, due to the presence of
furniture and other obstacles in the room.

Our approach, adapted from [5], consists in finding the
vanishing points of the lines in the image and then calculate
camera inclination using the technique presented in [4]. With
such a visual sensor, we are able to produce a method to
stabilize the walk of our robot, a Kondo KHR-1HV [20],
without using any other inertial sensor.

Fig. 1. The robot with the catadioptric sensor.

II. EQUIVALENT SPHERE

We use a central catadioptric sensor consisting in a cou-
pling between a hyperbolic mirror and a webcam.

Geyer and Daniilidis [7] have demonstrated how the
projection of a real point P on the image plane through
the omnidirectional mirror is equivalent with a two-step
projection via a unitary sphere centred on the focus F1 of
the mirror (the single viewpoint): the 3D point is projected
to the sphere surface and then to the image plane from a
point placed on the optical axis.
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For a hyperbolic mirror this second projection centre S
is between the north pole and the sphere’s centre (Fig. 2).
Its distance from the circle’s centre is d√

d2+4p2
, where d is

the distance between the foci and 4p is the latus rectum (the
chord through the focus F1 parallel to the directrix d) [2].

Fig. 2. Two equivalent projections for a hyperbolic mirror (Adapted
from [7]). A ray of light passing through P and incident with F1 is reflected
by the mirror in R to a ray of light incident with F2. Equivalently, the same
ray first intersects the circle in R′, then R′ is projected from S intersecting
` in Q. Lines RF2 and QF2 are coincident.

In this way, since the two-step mapping via the sphere is
a one-to-one correspondence, we can reproject a 2D point
back to sphere.

There are several methods to calculate this projection. We
choose to first calibrate the sensor with OcamCalib Toolbox
for Matlab [21] written by Davide Scaramuzza and then to
use a function of this tool to calculate the 3D transformation
on the sphere. The results are saved in a text file, so we do
the all procedure only once.

A. Vanishing points detection

Vanishing points are the points to which parallel lines
converge. The wide field of view of an omnidirectional image
permits to observe a high number of lines and the associated
vanishing points lie on the image plane, so they can be
tracked continuously from frame to frame.

The main idea is to extract three orthogonal bundles of
parallel lines from the environment, so we can build an
absolute reference frame that we will use to calculate pitch,
roll and yaw angles.

We have built a test environment consisting of four
white panels with random black vertical and horizontal lines
(Fig. 3).

However, the proposed algorithm works in every envi-
ronment if it is possible to extract at least two orthogonal
bundles of lines, each composed of at least three parallel
lines. The more parallel lines we can extract the more the
angles estimate will be robust.

Detecting lines in a catadioptric image is not a trivial
problem. Indeed, the projection on the image plane of a
3D real line can be any kind of conic like a straight line,

(a) Frontal view

(b) Omnidirectional image

Fig. 3. The test environment.

a circle, a hyperbola, a parabola and it is very hard to
detect a conic without knowing its shape. Also occlusions
have to be considered. In [17] e [19] a solution using an
adaptation of the Hough transform has been proposed. These
methods permit to correctly detect the lines, but with high
computational cost, too high for a real-time application.

In our work, we adapt the method proposed in [3], able to
extract the real world lines from the omnidirectional image
working with the equivalent sphere model. The following
process is valid for any mirror model once the sensor is
calibrated and the 3D transformation involving the sphere is
calculated.

The first step consists in detecting the edges in the image
using a Canny edge detector. The result is a binary image
where the edges are white (the value of each pixel is 255
working with a depth of 8 bit) and the remaining pixels are
black (value 0). We then chain the connected edge pixels. For
doing this we scan the image row by row: when we find the
first pixel different from 0 we put it in a new chain, we set
it to 0 so we do not consider it in the future no more and we
control if one of the eight contiguous pixels is different from
0, starting from the pixel at its right and turning clockwise.
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If yes, this new pixel is inserted in the chain and set to
0, we control the eight contiguous pixels and so on, until
some adjacent edgel exists. When the neighbours finish, we
come back to the first pixel of the chain and we repeat the
same operation a second time, so we consider a possible
fork. Further bifurcations will enter in a different chain. See
Fig. 4 for an example.

Fig. 4. An example of the chaining of the connected edgels. The numbers
show the insertion order. Pixels marked with an asterisk are not inserted in
the current chain, even though they are connected to the others.

We delete all the chains with a length shorter than
minPixels. For any valid chain we store the two extremes,
that can be the first pixel inserted in the chain (pixel 1
in Fig. 4), the last pixel inserted (pixel 13), or the last
pixel inserted before the second propagation (pixel 7). In
the previous example the extremes are pixel 7 and 13. It has
been proved in [7] that the projection of a real world line
onto the sphere is a great circle, has in Fig. 5.

Fig. 5. The projection of a line on the sphere is a great circle (from [11].

Exploiting this property we can infer whether a chain
corresponds to the projection of a world line. We project
each chain on the sphere using the file that we have saved
after the sensor calibration. Let P1 = (X1, Y1, Z1) and PN =
(XN , YN , ZN ) be the two endpoints of a chain composed of

N pixels. These two points define a unique great circle C
that lie on the plane P passing through the sphere centre O,
whose normal is −→n =

−−→
OP1 ×

−−−→
OPN . For each point Pi of

the circle we calculate its distance from the plane P with
the formula d =

−−→
OPi·−→n
|−→n | . If the average of the distances of

the chain points from P is smaller than minDist, the whole
chain corresponds to the projection of a line in the world and
we identify it with its normal. Otherwise, we split the chain
into two sub-chains at the point of maximum distance from
the plane and we perform the same control for each of the
two sub-chains. The splitting step ends when the considered
chain corresponds to a line or the chain length is smaller than
minPixel. In [3], they suggest to use relative high values
for both thresholds because the shorter the chain is, the more
fragile the estimation of the great circle normal is.

As proved in [7], the great circles corresponding to a
bundle of parallel lines intersect into two antipodal points on
the sphere. Thus, in order to detect bundles of parallel lines
we use the following algorithm. Let −→n1 and −→n2 the normals
of two great circles on the sphere. Vector −→u passing through
the intersections I1 and I2 of the two circumferences can be
calculated with the cross product −→u = −→n1×−→n2. We compute
the same operation for each pair of circle. If at least three
lines have the same intersection points, we consider them as
a bundle.

It has been proved in [5] that the direction of the vector −→u
is the same of that of the bundle of parallel lines associated
to it (Fig. 6). So all the lines in the same bundle are
characterized to have the same vector −→u .

Fig. 6. The direction of two parallel lines is the same of that of the line
passing through the intersection points of the corresponding circumferences
(from [3]).

In our implementation, once we calculate the vanishing
points of each pair of circumferences, we group them accord-
ing to their position using special lists. Every list contains
a reference point that is the average point of the elements
inserted in that list. For each vanishing point, we calculate
the distance from the reference point of each list. When we
find a distance lower than a certain threshold, we put it in
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the corresponding list. If no suitable list exists, we create a
new one.

The average point of the list with the greatest number of
elements represents the vector corresponding to the principal
direction. The second direction is determined by the vector
orthogonal to it, belonging to the list with the greater number
of elements. For efficiency reasons, the third direction is
achieved making the cross product of the other two ones.
So, we must detect at least two perpendicular bundles of
parallel lines in the environment. It is possible in this way
to define an orthogonal reference system made up of these
three axes. An example of the whole procedure is shown in
Fig. 7.

III. VISUAL GYROSCOPE

The reference frame is not yet completed because we have
not set the axes orientation. To distinguish the vertical axis
from the horizontal ones, in [5] the authors propose to detect
the sky supposing that it represents the brightest part close
to the omnidirectional image border. We work in an indoor
environment so we cannot use this approach. We avoid the
problem assuming that the sensor starts to work with the
robot in vertical position. Thus, in the first captured frame
the software decides that the vertical axis is that, among the
three calculated, at the minimum distance from the vertical
vector Z = [0, 0, 1].

To calculate pitch and roll angles it is sufficient to refer
to this axis (labeled with V ), while the two horizontal
axes will be used in the next paragraph to estimate the
rotation. Once we fix the initial reference frame, the visual
gyroscope starts to calculate the camera slope analyzing
each new captured frame. From every image we extract the
three principal directions. Each new axis will replace the
corresponding one calculated in the previous frame, so we
can track their movements. We do not replace the old axis
if the corresponding new one diverge more than a certain
angle. We assume that the rotation between two consecutive
frames is always lower than 45◦ for each of the three angles,
that is a valid assumption with the high frame rate that we
use.

The angles estimation is not made calculating the axis
movement between consecutive frames, because this can
lead to a sum of errors, but it is made in an absolute way
comparing the last V vector with the Z axis.

We deduce pitch ψ and roll ρ angles as follows

ψ =
yV

|yV |
arccos

(
|zV |√
y2

V + z2
V

)
, (1)

ρ =
−xV

|xV |
arccos

(
|zV |√
x2

V + z2
V

)
. (2)

Each new measurement is averaged with the four previous
ones, so we can obtain more accurate values without high
fluctuation from one frame to another.

The angles obtained with the catadioptric sensor have been
compared with those provided by an inertial accelerometer.
We can see in the graphic in Fig. 8 that there are no

(a)

(b)

(c)

Fig. 7. Steps for the vanishing points extraction from Fig. 3 (b): (a)
detection of the edges and concatenation of the connected pixels, (b)
detection of the lines that correspond to straight lines in the real world,
(c) computation of the vanishing points corresponding to the three principal
directions of the reference frame.
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substantial differences between the two measurements. This
proves the correctness of the designed visual gyroscope.

Fig. 8. Comparison between the pitch angle calculated by an inertial
accelerometer and that calculated by the visual gyroscope.

A. Visual compass

The most used technique to calculate the rotation consists
in tracking some particular points with RANSAC so that we
can estimate the rotation angle between consecutive frames,
working with omnidirectional [9] or unwarped images [12]
[16], or using the optical flow like in [8] and [15].

In our work instead, we try to see if the simple vanishing
points method is also valid in this scope. To build the visual
compass we use the two horizontal axes of the reference
frame, labeled with R1 e R2. It is not important which of
these two axes is the first and which is the second, we are
only interested to distinguish them so we can track their
movements. The robot rotation will be calculated relatively
to their start position. As seen before, we extract the new axes
R′1 and R′2 from each frame. They will replace the previous
ones only if the difference angle is less than a certain
quantity. The rotation angle is always estimated between the
initial and the last axis. In this case, the provided information
is duplicated because we only need one horizontal axis to
calculate the yaw angle. Knowing two horizontal axes we
can apply a control method. Indeed what one can expect is
that the angle given by R1 is the same given by R2. So, if
the difference between the two angles is less than a certain
angle we compute their average, otherwise one of the two
vanishing points is wrong and we consider only the angle
nearer to the corresponding one calculated in the previous
frame. The results are good enough if the movements of the
robot are on the XY plane.

B. Results in real environments

The proposed algorithm has been tested also in environ-
ments different from the test one of Fig. 3. It continues to
work if it is possible to extract some parallel lines. As we
can see in the following two examples, we are able to extract
all the possible lines from the image. In Fig. 9 we place the
robot in a RoboCup environment. All the field lines and the
goalposts have been extracted and they can be used to define
a three axes reference frame. In Fig. 10 instead, the robot

is set on a desk in our laboratory. As we can see, this kind
of environment contains several objects that define a lot of
lines. Unfortunately, most of these lines are too short and
represent only noise for the visual gyroscope. So we discard
all the lines shorter than a certain length and preserve only
the longest lines. Even if the number of detected lines is
small, it is sufficient to estimate attitude and heading angles
correctly, but we have to consider that the noise increases if
the lines extracted are shorter.

The computation time is suitable for a real-time appli-
cation since the algorithm in our C++ implementation can
process about 20 frame per second.

IV. BODY STABILIZATION

We have seen how to extract the vanishing points of
parallel lines from the environment and use them to estimate
the slope and the rotation of the catadioptric sensor. We
mount the sensor in place of the head of our robot. Since the
camera is stuck to the robot, the calculated angles correspond
of the slope of the robot trunk. In this way we can use this
information to stabilize the robot during the walk without
using any inertial sensor. It is interesting to notice that we do
not stabilize only the robot’s posture but also the perception.
Indeed, since the robot always tries to keep its trunk in
vertical position, camera oscillations are reduced and this
is a great benefit for all the vision algorithms that we use
during the robot walk, such as tracking and blob recognition.

A. Stabilization of the vertical position

In the first test the robot had to keep the vertical position
correcting its pitch and roll angles when standing still. To
do this, we correct the four servomotors of the ankles,
compensating them with a quantity equal to the opposite
of the angle measured in the two directions. We performed
two experiments. In the first one, when the robot is pushed
forward or backward, it puts up resistance rising on the tip
toes or on its heels (in Fig. 11 (a) the robot is reacting
to a backward push) to maintain its vertical posture. The
same if the push is lateral. In the second experiment the
robot stands on a platform which changes its inclination
and it is able to modify its position in real time keeping
it upright. In Fig. 11 (b) the robot is on an inclined plane in
the position corresponding to the upright posture as it was
on a horizontal surface. In Fig. 11 (c) instead we can notice
how the compensation applied to the ankles brings the robot
back to the vertical position.

B. Walking with stabilization

Many articles show how to stabilize a humanoid robot
gait modifying the motor positions in order to maintain
the Zero Moment Point inside the convex hull of the foot-
support area [14]. Most of the time, walking gaits are learnt
in simulation simplifying the robot model as one or two
masses inverted pendulum model [13]. To pass to the real
robot it is necessary an exhaustive study to establish the
weight distribution and the movements of each servomotor.
The simple model used in simulation must be converted to
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Fig. 9. Vanishing points detection in a RoboCup environment. Fig. 10. Vanishing points detection in a lab environment.
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(a) The robot reacts to a back-
ward push rising on the tip toes

(b) The robot on the inclined
plane without any correction

(c) The robot on the inclined
plane with ankle correction

Fig. 11. Posture correction using the visual gyroscope.

adapt it to the real robot, considering that complexity grows
when the degrees of freedom increase.

We chose a different approach, as suggested in [1] and
[10]. The idea is to create an offline walk pattern, fix
minimum and maximum thresholds on the inclination that
the robot can achieve during the walk and when the visual
gyroscope detects an out of range value modify the robot
walking gait to recover balance. One can choose to straighten
up the robot, to lower its centre of mass, to slow down its
movements or to stop them until it recovers its balance, or
to put it in a safe position that minimize the damages in case
of fall.

We have designed a static walk pattern made up of four
elementary movements. We have made several experiments
to measure the range of pitch and roll angles for each
movement, using our visual gyroscope.

It is interesting to note the periodicity of the graphs of the
two angles measured during the walk (Fig. 12). Analyzing
these graphs, it is possible to realize if there is any phase of
the walk in which there are anomalous oscillations and in
this way correct the position of the motors.

At the moment we do not consider the roll angle because
modifying the robot gait with a lateral stabilization requires
more deep studies. Indeed in this situation we need to modify
all the servos of both legs to ensure the right support in every
phase of the walk. What we do is to use the pitch angle to
control frontal inclination.

During the walk, for each of the four elementary move-
ments we control if the pitch angle is inside the fixed range
of values. If not, we change the two ankle motors responsible
for the frontal slope, compensating them with an angle

(a) Pitch angle

(b) Roll angle

Fig. 12. Pitch and roll angles measured during the walk.

equal to the opposite of the difference between the current
value and the nearest threshold. The same compensation is
applied to the other three elementary movements. Applying
a stabilization to a static walk allow to obtain a more fluid
and balanced gait. The most evident results can be noticed on
an inclined plane, on which the robot walks with a vertical
position and it is able to modify its posture online when the
terrain changes its slope (Fig. 13).

Fig. 13. Four steps of the walk. The gait above is without stabilization,
while we apply stabilization in the gait below.

Two videos are available at the following links:
http://www.youtube.com/watch?v=PfuQ0VHrz1o
http://www.youtube.com/watch?v=H2YCr9quJuk
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V. CONCLUSIONS AND FUTURE WORKS

We have presented a simplify method to use the catadiop-
tric sensor as a visual gyroscope and a visual compass.

We have performed experiments in three different envi-
ronments to show that we can extract a suitable number of
parallel lines to determine the vanishing points of the three
principal orthogonal directions.

The designed stabilization system, even though it is very
simple, allows to observe some improvements, consisting in
a better balance and in the capacity to maintain the vertical
position independently of the terrain slope.

The next step is to improve the system allowing a more
complex stabilization to take account of also the lateral
inclination.
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