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Abstract— Autonomous mobile robots equipped with visual
perception aim at detecting objects towards intelligently acting in
their environments. Such real-time vision processing continues to
offer challenges in terms of getting the object detection algorithm
to process images at the frame rate of live video. Our work
contributes a novel algorithm that is capable of making use of
all the frames, where each frame is efficiently processed as a
”continuation” of the processing of the previous frames. From
the 2D camera images as captured by the robot, our algorithm,
Wave3D, maintains 3D hypotheses of the presence of the objects
in the real 3D world relative to the robot. The algorithm does not
ignore any new frame and continues its object detection on each
frame by projecting the 3D hypotheses back into the 2D images to
focus the object detection. We can view Wave3D as validating the
3D hypotheses in each of the images in the live video. Wave3D out-
performs the static single-image classical approach in processing
effort and detection accuracy, in particular for moving objects. In
addition, the resulting reduced vision processing time translates
into more computation available for task-related behaviors, as
greatly needed in situated autonomous intelligent robot agents.
We conduct targeted experiments using the humanoid NAO robot
that illustrate the effectiveness of Wave3D.

I. INTRODUCTION

Autonomous mobile robots are increasingly being used in
our environments to perform concrete complex tasks. Such
robot agents need to perform a set of computationally intensive
functions, in order to be able to perceive, to reason about, and
to act in their surroundings.

The robot’s actuation, whether it is to manipulate objects
or just to navigate throughout its environment, is based on the
information provided by its sensors. The success of this actu-
ation depends on the reliability and accuracy of the sensory
information. One of the richest and most complex sensory
information sources is the visual information as captured
by cameras. Many of the modern robots are equipped with
cameras to observe the world and detect the objects relevant
to accomplish the specific tasks.

Roborts perform their tasks in a closed loop between percep-
tion and control (behaviors). Control includes the computation
of the next action towards self-localization, navigation, coop-
eration, or object manipulation. In dynamic environments in
particular, the detection of relevant objects to the actuation
has to be done in real time, i.e., with no delay in the
perception/control loop. As an example, in robot soccer, a
moving ball needs to be detected in real time, so that the

perception and control loop moves the robot’s camera to focus
the attention on the ball. Tracking the ball is a challenging
coordination problem as the ball and the robot move usually
not at low speeds. In order to succeed, the control to actuate the
camera’s motors should be calculated with the most updated
perception information, as made available at the frame rate
of the camera (e.g., for a 30Hz frame rate, the available
computation time in between frames is 33ms.) If perception
processing, and therefore object detection, takes longer than
the frame rate, then the control algorithm makes decisions
based on old perception (i.e., old positions of the ball),
most probably leading to ineffective actuation that may miss
the ball. As another example, mobile robots have to detect
people and obstacles in real time, when moving in our daily
environments. If the perceptual information (visual or of other
type) used for the selection of the navigation action has a big
delay, the robot could collide with obstacles, including with
humans.

So, object detection has to be performed efficiently by the
complete robots, as such robots cannot assign all their com-
putational effort to perceptual processing. Unfortunately, the
information extraction from the images in general incurs in in-
tensive and costly processing. Most of the current approaches,
as we discuss next in section II, perform object detection by
analyzing highly dimensional static images, which becomes
an expensive computational task for a real robot with limited
computation resources. Most efforts try to improve this process
by reducing the dimension of the images to be analyzed, but
they still may not be able to process images at the frame rate
of live video, and frames may be discarded, even if they are
newer than the ones being processed.

In this work, we contribute a new approach for detecting
objects that does not discard any frame in live video, leading
therefore the control decisions to be made on the most updated
visual information of the world. Our algorithm, Wave3D,
achieves this feature by being able to process every new
frame as a continuation of the processing of previous frames.
The algorithm generates 3D hypotheses of the presence of
the objects in the real 3D world relative to the robot. These
hypotheses are validated by projecting them to the 2D image
coordinates in the images fetched by the robot camera. The
interesting aspect is that these 3D hypotheses are independent
from a specific image frame, as opposed to the 2D projections
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that depend on the robot’s motors position. Because of this
independence, our algorithm makes use of every new image
fetched by the camera, which let us to perform the object
detection process in live video.

Furthermore, we achieve another improvement by gener-
ating 3D hypotheses on the most probable positions based
on the previous frames. For example, the hypotheses for ball
detection in robot soccer are only generated on the playing
floor, starting where the the ball was detected previously. The
algorithm progresses with its search in a wave-like manner, as
a propagation from the point of the hypotheses. The Wave3D
algorithm greatly improves the processing effort which, frees
computation for task-related behaviors.

II. RELATED APPROACHES

Computer vision is a classic field in computer science
which is focused in extracting information from images for its
use in computer applications. There are many applications in
computer vision. Works on face and object detection in images
extract statistical information, which is compared among them
using Neural Networks [1] based or Support Vector Machines
[2], among the most common techniques. There are also many
application of computer vision technologies for people and
traffic surveillance, as [3] and [4]. Techniques for large image
processing are becoming more and more popular with the
development of works like [5] and Google Goggles focused
on processing and classifying images from the web. The
majority of the previously cited works process full images
because this is made offline or relying on expensive and
powerful computers. There are some techniques for real time
video processing which focus on a fast object detection with
computational restricted resources. One of the most successful
video processing technique is Condensation [6][7][8][9]. This
technique is based on maintaining a population of samples
which represents a probability distribution for detecting objects
in images. This technique does not process every pixel in the
image, but the ones where the particles are. This technique has
successful results, but the search space is always the image. In
[10], a MonteCarlo approach is used for multi-object tracking
with several cameras. In this case, the search space is the real
world, and the particles are projected to the images captured
by several cameras in order to validate them.

But we are working with robots, and these resources are
not available or it will consume a lot of them. From initial
works on computer vision for robots [11], images are being
used as an important sensor for getting information from the
environment. In the domain in which we are working, where
the computational time is limited and the time requirements
are very exigent, the efforts are focused on developing efficient
computer vision techniques. The most extended approach for
object detection is [12], which consists of processing every
pixel in an image. This process includes color segmentation,
connecting regions with same color characteristics, extracting
information from regions (bounding box, centroid, density)
and posterior valid regions merging. This method consumes
high computational resources because all the pixels in the

image have to be classified. This method has been used widely
in the RoboCup domain, using techniques like look-up tables
or reducing the resolution to make this method computation-
ally more affordable. The state-of-the-art approaches in this
domain are scan-lines based [13][14], which tries to make
the image processing more efficient. Instead of processing all
the pixels in the image, they only process some rows and
columns from the image and take note of the color transitions
along these lines for a posterior analysis of these transition
points. Most of these work detect the relevant objects of the
environment in the image space. After detecting the objects in
the image, some of them calculate the tridimensional position
of the objects using the motors odometry and some previous
knowledge about the object size and position (i.e. the ball is
always in the floor).

The radical novelty of the method proposed in this paper
with respect to most of the previously presented approaches,
is doing the inverse process for detecting the objects. Objects
are not pixels, they are real elements that exist in the real
world, independently of the fact of being captured in an image.
We guess possible object positions in the real world, and
we use the image to validate these hypotheses. Making the
search space independent from the image allows us to refresh
the images as soon as they are fetched, doing a real video
processing, instead of an image processing. This allows us
to work at higher frequencies and to not mind the image
resolutions.

III. WAVE3D APPROACH

Our focus is on the RoboCup Standard Platform League,
which presents a complex problem. Virtually all the classic
problems of mobile robotics have to be solved for making a
robot play soccer autonomously: locomotion, perception, self-
localization, navigation, coordination or generation of behav-
iors, including the most representative. The environment where
the game is played is very dynamic and challenging, with
numerous collisions and occlusions caused by other robots
that are in the field.

All elements of the game have a distinctive color: The ball
is orange, the field is green, white lines and the goals are blue
and yellow, respectively. Because of this, since the robots in
the RoboCup Standard Platform League are equipped with a
camera, the main sensor is vision. All the elements relevant to
the robot are perceived by processing images from the camera.

The main feature of the Standard Platform League is that
the robot is the same for all participants. As the hardware
can not be modified, most efforts are focused on software
development. In addition, the robots are autonomous and all
processing must be carried on board. Resources are limited and
must be optimized for the implementation of control software
in a reasonable time.

In several approaches, the detection of relevant elements
is done through an exhaustive analysis of the image. This
means examining each of the pixels of an image to find
related groups of pixels with similar color and correct size.
The process is usually quite costly, in terms of computation
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Fig. 1. Pin-hole camera model. The camera frame origin C is at the center
of the camera. The line connecting the point PC and the camera center cross
the image plane in the point pimg , which is its projection in the image.

time. Moreover, the processing of an image is not usually
related to the following image, having to repeat the detection
process in each cycle.

This work is focused on visual processing in robots. Per-
ceptual information is used to generate commands for robot
actuation. This not only means that information must be
accurate and reliable, but must be done in real time for
effective actuation. If processing a complete image takes too
long, the action commands are generated from information
that is too old to be effective in some cases.

Our Wave3D algorithm provides a new approach to vision
systems for robots. First, the search for the objects is per-
formed in three dimensional space. The system hypothesizes
positions where the objects can be found and then validated in
the image. This permits to make a real video processing rather
than image processing. Thus, the processing time does not
depend on the resolution of the images but on the hypothesis
to be tested in each cycle. Furthermore, the hypotheses are
independent of the images, so the search begun in an image
can be continued in the following image. This allows us, on
one hand, to yield to the control code and continue later, even
using a different image. On the other hand, validation of the
hypotheses are conducted using the latest image, even if they
change during the detection process.

A. Reference frames

Before starting the description of the algorithm Wave3D
is necessary to present the reference frames used in the rest
of this paper. We define three different reference frames: The
image frame, the camera frame and the robot frame. The first is
two-dimensional, whereas the latter two are three dimensional.

An image stores the information collected from the camera.
An image pixel pimg(u, v) is the intensity of light or the color
stored in the image coordinates (u, v) in the image frame img.
The reference frame of the camera C represents points in space
with respect to the center of the camera. Figure 1 shows these
two reference frames and how they are related using the ”Pin-
hole” model. The image frame is a plane perpendicular to

Fig. 2. Robot and camera frames. Projection of the Hypothesis pC (or pR

with respect the robot frame) in the image.

the axis ZC , at a distance f far away from the center of the
camera. Every point pC in the camera frame has an unique
projection pimg in the image plane, located at the intersection
of the plane with the line linking pC with the center of the
camera.

Instead of using the reference axes of the camera C, we use
the reference axes of the robot R. Figure 2 shows OR as the
origin of the reference frame R, which is on the floor between
the robot’s feets. The points on the axes of the robot are
related to its coordinates in the axes of the camera by using the
equations 1-3. Each image has an associated matrix RT , which
is calculated from the position of the robot’s motors. This
matrix contains the rotations Ra,b and translations Ta (where
a and b subindexes are related to any axis) for transforming
the points from one reference frame to another one.
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R )T = RT · px′,y′,z′
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B. 3D ball hypotheses

The goal of the robot’s visual processing is to calculate
the position pR of an object relative to the robot frame R .
Instead of performing an image processing to find the object
and then transform the position in space of the image img
to the space of the robot R, our new approach performs a
subject search directly in the space of the robot R. Wave3D
generates a set of hypotheses hi

R in positions where the object
can be found. The projection hi

img in the image is calculated
from each hypothesis hi

C . If the coordinate hi
img corresponds
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Fig. 3. 3D hypothesis generation in wave-like manner centered at WOR.
The hypothesis hj

R projection corresponds to a green pixel and the search
continues. The hypothesis hi

R projection corresponds to an orange pixel. The
bounding box calculated from hi

R is valid and the search successfully finishes.

to the color of the object sought, it starts a second validation
stage. In this second validation stage, we generate a predefined
number of points pimg next to hi

img to calculate the volume
of the detected object. If this volume is consistent with the
desired object, the search successfully finishes. If the volume
does not correspond to the ball size, the search continues.

The hypotheses are generated in a wave-like manner from
an initial position. If the object’s position was known before,
this will be the initial position of the wave. If the position of
the object is unknown, it begins in the center of the robot’s
field of vision. If an object is detected, subsequent searches
begin in the position of the object. In this way, subsequent
searches will need to generate a few hypotheses to find the
object again. If the wave leaves the whole field of vision of
the robot, it restarts again.

Figure 3 is an example of this process for the detection of
the ball. The hypotheses begin to be generated from the wave
origin WOR away from it at every step. When the projection
of hi

R in the image plane, hi
img , corresponds to the coordinates

of a orange pixel, it begins the second phase of validation. The
same figure shows that the bounding box created from hi

R fits
with the ball dimensions, making the search process finish
successfully. In the following cycles, the origin of the wave
will be the center of the bounding box created from hi

R.

C. Live video processing

The robot should react to changes in their environment prop-
erly. To detect these changes, it uses perceptual information
obtained in visual processing, which is used to generate the
actuation commands of the robot.

The robot software execution is often planned as a closed
loop that begins with the processing of images from the camera
and ends with the generation of the action commands. Often
a robot has to react to visual stimuli in very short periods of
time, e.g. to track a ball moving at high speed. The reaction
of the robot to track the ball has to be very fast. Any delay in
the generation of action commands would result in losing the
ball.

Since Wave3D searches for objects in the robot space R,
which is independent of the image, it can be used instead of
the old one when a new image is available. Figure 4 shows
the execution of Wave3D and the original approach. The new
images are always used for the detection of objects. For this

Fig. 4. Execution scheduling in time with the original video module (upper
line) and with Wave3D (bottom line). The center line represents the image
capture thread.

reason, the actuation commands are more appropriate, as they
are generated using the most updated perceptual information.
In addition, visual processing can be paused at any time and
resume later. Wave3D arbitrarily set a maximum time tmax

reserved to visual processing. If it exceeds this time, it yields
to the execution of behaviors. This will guarantee a minimum
rate for the control loop execution. The whole algorithm is
described in detail in Algorithm 1.

Algorithm 1: Wave3D algorithm.
Ball=getLastBallPosition()
execution time=0;
start time = clock();
while execution time < tmax do

if camera.isNewImage()) then
image = UpdatedImage();

hi
O = getNewHypothesis();

if hi
O=0 then

resetWave();
continue;

hi
C = ApplyRT(hi

O);
hi

img = ApplyPinHole(hi
C );

color = image[hx,i
img][hy,i

img];
if color == orange then

BB = calculateBoundingBox(hi
O);

if BB.valid() then
WOO = BB.center();
setBall(BB.center());

IV. EXPERIMENTS

Our current approach for visual perception enables a robot
Nao to optimize actuation using two simple techniques: in-
creasing the execution frequency of the control loop, and
using the most updated image for hypothesis validation. In this
section we measure how much the frequency of the control
loop is increased using Wave3D with respect to a classical
approach, and the improvement provided by this method in
the robot actuation.

We have designed an experiment to measure the control loop
frequency and to compare the time spent by our original vision
module, which uses a classical approach, with the Wave3D
vision module. In this experiment, the ball is always visible
in the image and is moving at different speeds. We set the
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Fig. 5. Frequency of the control loop using the original vision module
(dashed line) and using the Wave3D vision module (solid line).

maximum time tmax for video processing in the Wave3D
module to 15 ms. Table I shows the execution time spent by
the original vision module and by the Wave3D vision module.
On a few occasions the maximum time slot duration is reached
(since the ball is usually found before this threshold), and no
other image is available. Figure 5 shows the frequencies of
the execution of the original method (10 Hz on average) and
Wave3D (24Hz on average).

The benefits of Wave3D in terms of execution speed are
evident, but we have yet to demonstrate how this improvement
benefits the operation of a Nao robot. The robots must use
object detection to self-localize and score goals. It is infeasible
to measure the benefits of Wave3D during a soccer match,
because there are many confounding factors that can influence
the results. Hence, we make the experiments using a basic skill
called TrackingBall for these experiments.

The goal of the TrackingBall skill is to look for the ball and
center it in the image at all times. To achieve this goal, the
skill takes the ball position provided by the video processing
module in the robot frame R and moves the head to point
directly at the ball (matching up the ZC axis and the line that
connects the camera with hi

C , obtained from applying equation
3 to hi

R, as we showed in Figure 2). This skill is executed in
the stripped slots of Figure 4, and sends control commands to
the robot neck motors according to the information provided
by the vision module.

In Figure 6 we have represented the value that we want to
measure. This value is designated ∆x or scan distance and
represents the variation in the position of the ball, in the robot
frame, used by the control code to track the ball. If ∆x is high
(upper image in figure 6), the distance from the previous point
that the camera was pointing at and the new point is high, and
the head movement will be less smooth. Besides that, if ∆x is
high enough to set the ball outside the camera range of vision,
the ball will be declared lost, and a searching routine begins.
If ∆x is low (bottom image in figure 6), the movement will be
smooth, and the ball will remain in the robot’s field of view.
The lower the value of ∆x at a similar speed of the ball, the
more updated the position of the object to track will be and
best performance the robot actuation will be.

In this experiment, we measure the variation in the ball

Fig. 6. Sequence of images when the ball is moving. ∆x represents the
position variation between frames.

Fig. 7. Variation of ∆x (solid line) while the ball is moving at a speed
(dashed line) using the original video module.

position, ∆x, while the robot is tracking it at different ball
speeds. We activated the TrackingBall skill to make the robot
track the ball by moving the head without walking. Once the
ball is detected by the robot, we manually moved the ball to
make the robot adjust the neck position to center the ball in
the image. The ball follows a trajectory parallel to the Yrobot

axis, 1.5 meters far away from the robot. We made several
trials at different ball speeds with both vision modules.

Figures 7 and 8 show the results of this experiment for a
similar trial. The speed in both cases is lower than 40 cm/s
and the experiment begins and ends with the ball stopped. The
variation ∆x using the original video module (figure 7) varies
while the ball is moving, reaching the distance of 25 cm/s.
The variation ∆x using Wave3D (figure 8) is always low, with
values lower than 5 cm/s. The head movement of the robot is
smoother with Wave3D than with the original video module,
and the risk of losing the ball is lower as well.

The experiment was conducted at different ball speeds.
Figure 9 summarizes the results. The value of ∆x is higher
using the original vision module for every ball speed, and
increases with speed. With Wave3D, the value of ∆x is lower
and seems to be constant with respect to speed.

V. CONCLUSION

We presented a novel algorithm, Wave3D, for visual ob-
ject detection suitable for autonomous robots embedded in
complex tasks, which need to save computational power
from vision to behavior processing. Furthermore the algorithm
allows for the processing of the most updated visual frame
leading to the control algorithm to select actions based on the
most updated sensory information processed.
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Method Median Average Stdev
Original 43.0 ms 43.305 ms 4.225 ms
Wave3D 6.0 ms 6.306 ms 2.656 ms

TABLE I
COMPUTATION TIMES FOR THE ORIGINAL METHOD AND FOR WAVE3D

Fig. 8. Variation of ∆x (solid line) while the ball is moving at a speed
(dashed line) using Wave3D.

Fig. 9. Mean and standard deviation of ∆x using the original vision module
(dashed line) and Wave3D (solid line).

The Wave3D algorithm creates and maintains hypotheses
of the presence of the objects in the real 3D world relative
to the robot position. Such hypotheses are hence independent
of a specific 2D frame and therefore can be mapped into
every frame, as soon as it is available. The 3D hypotheses
are validated in each new 2D image. The search for the object
processes starting at the hypotheses and spreads to the rest of
the image as wave propagations from the dropped hypotheses.
Each frame is then processed as a ”continuation” of the
previous frames. No new frame is ignored during the visual
processing time slots, and robot actuation greatly improves. As
we have shown in the experiments, this approach improves the
actuation decisions by using the most recent information of the
objects and allowing the control to take enough computational
effort and to use the most updated visual information.

Looking for real objects in the 3D world is more natural
for detecting them. This makes Wave3D more efficient in
the object detection process. The execution frequency of the
overall robot system is improved as well, without losing per-
ceptual accuracy or reliability, which means more computation

available for task-related behaviors. Wave3D is used in the
RoboCup domain, but it is applicable to any object detection
task for robots which use cameras as main sensor.
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