
Vision-Based Cognition of a Humanoid Robot in
Standard Platform Robot Soccer

Somchaya Liemhetcharat 1, Brian Coltin 2, and Manuela Veloso 3

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

1som@ri.cmu.edu
2bcoltin@cs.cmu.edu
3veloso@cs.cmu.edu

Abstract— In the Standard Platform League of RoboCup,
teams compete using the same hardware platform — the NAO
humanoid robot. The NAO has two cameras, but only one can
be used at one time. The camera image is the primary input to
the robot’s cognition; the features detected by the vision module
are used to self-localize and model objects in the world. In this
paper, we focus on how the output of the vision module, the vision
features, are used by the localization module to determine the
robot’s pose, and by the world model module to model objects
in the world such as the ball and goal.

I. INTRODUCTION

In the Standard Platform League of RoboCup [1], [2], all
the teams use the same hardware platform, a NAO humanoid
robot (Fig. 1) [3], where all the processing is done on the
robots, i.e., there are no off-board computers or cameras. We
are interested in teams of robots with onboard perception,
control, actuation, and communication capabilities. In order
for a team of robots to perform well playing soccer, each
robot must be capable of cognition based on its sensory input.
However, each robot’s view of the world is limited, due to
its spatial position and narrow field of view of its camera. As
such, in addition to visual processing of the camera image, the
robot has to model its position in the world, i.e., localization,
and model other objects in the world, i.e., world modeling.

Fig. 1. NAO humanoid robot used in the RoboCup Standard Platform League.

The NAO humanoid robot has two cameras in its head,
but it is only able to access one camera at a time, due to a
shared hardware bus. The cameras are the main sensors of
the robot, and the output of the vision module is the primary
input for the other cognition modules, namely localization

and world modeling. The objects in RoboCup are typically
color-coded, e.g., balls are orange, goals are yellow and blue,
and the vision module uses CMVision to segment the camera
image into discrete colors before detecting objects [4]. When
the color segmentation table is accurate, the objects in the
camera image are detected accurately; when there are errors in
color segmentation, e.g., due to a change in lighting conditions,
objects may not be detected accurately or at all. Thus, the use
of vision as the primary input to the other cognition modules is
a double-edged sword — the performance of the other modules
are strongly correlated with the accuracy of vision.

While vision is important to the robots, it is not their
primary goal — the goal of the multi-humanoid team is to
score goals playing soccer. However, scoring goals effectively
requires accurate vision, good cognition of its position on the
field, and the positions of other objects in the world.

In this paper, we formally define the robot cognition domain,
which includes the sensor readings of the robot, the sets of
vision features, robot poses, and object models. We then define
the vision, localization and world model modules as functions
that update the vision features, robot pose and object models
respectively. These modules are then used to define the robot
cognition problem, which we address in this paper.

Localization estimates the pose of the robot, and there is
extensive previous related work. Monte Carlo methods are
commonly used to perform localization on mobile robots [5],
and other methods include grid-based Markov localization and
Kalman filtering [6]. In order to perform localization, a sensor
model must be developed [7], and we detail our method in this
paper. In addition, due to the dynamic nature of RoboCup,
where robots can be taken off the field due to a penalty, we
use sensor resetting when new landmarks are detected [8].

World modeling involves creating models of objects in the
world, which is used to generate the behaviors of the robot.
The NAO humanoid robots have a limited field of view and are
thus unable to perceive all objects in the world continuously. In
order to perform its task of scoring goals, the robot has to look
at different objects at different times. Thus, the world model
module provides models of these objects when they are not
currently in view. There has been extensive previous related
work in world modeling, such as in tracking and modeling

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

the actions of the robot and its teammates [9], and fusing
information from multiple hypotheses and sources [10], [11].
A thorough explanation of our world modeling is provided
in [12]. In this paper, we focus on the world modeling with
regards to its dependence on vision, and how we process visual
information in the world model.

II. PROBLEM STATEMENT

Definition 1: The robot cognition domain is a tuple
D = {O,S,V,P,M}, where:
• O is the set of labels of objects in the world;
• S is the set of possible sensor readings
• V is the set of possible vision features;
• P is the set of possible poses of the robot;
• M is the set of models of objects.
A sensor reading s ∈ S contains all the inputs to the

robot, e.g., the joint angles, camera image, odometry update,
messages from other robots, and the state of the game.

The raw camera image in s is used by the vision module
to generate vision features. Vision features v ∈ V provide
relative coordinates to objects detected in the current camera
image, i.e., v : O → (xr, yr), where (xr, yr) are the relative
coordinates of the object from the robot.

Definition 2: The vision module processes sensor readings
and generates vision features, i.e., vision : S → V .

A pose of the robot p ∈ P provides global coordinates of
objects, in particular the robot itself, i.e., p : O → (xg, yg),
where (xg, yg) are the global coordinates of the object.

Definition 3: The localization module processes the sen-
sor readings and vision features and updates the pose,
i.e., localize : P × S × V → P .

In other words, localize(p, s, v) = p′, where p′ is an
updated pose, using the previous pose p, sensor reading s and
vision features v.

A model of the objects m ∈ M provides relative coordi-
nates of the objects, i.e., m : O → (xr, yr), where (xr, yr) are
the relative coordinates of the object to the robot. The main
difference between a model m and vision feature v is that v
returns coordinates of objects that are currently visible, while
m models objects in the world, regardless of whether or not
they are currently visible.

Definition 4: The world model module updates the object
models, by processing the sensor readings, vision features and
current pose, i.e., worldmodel :M× S × V × P →M.

After defining the modules above, we can now formally
define the robot cognition problem:

Definition 5: The robot cognition problem is a tuple
{D,V, L,W}, with the goal of obtaining accurate poses
P ∈ D and models M∈ D using V,L,W , where:
• D is the robot cognition domain;
• V is the vision module;
• L is the localization module;
• W is the world model module.
In this paper, we do not elaborate on the vision module,

and focus on how the vision features (the output of the vision
module) is used by the localization and world model modules.

III. LOCALIZATION

Each robot must localize to determine its own position on
the field in global coordinates based on vision and other sensor
readings. The robot’s global position is needed to shoot at
the opponent’s goal, defend the team’s goal, and to provide a
common coordinate frame for sharing information in the world
model, such as the ball’s position. Recall that localization is
a function localize : P ×S×V → P . localize(p, s, v)
takes a current pose estimate p, sensor readings s, and vision
features v, and returns an updated pose estimate.

To update the pose estimate, we use Monte-Carlo local-
ization with sensor resetting [8]. The pose p is a tuple of
the form (c, a, w), where c ∈ C is the estimated pose in
the configuration space C of the robot, a is a list of n
configurations ci ∈ C representing the possible configurations,
or particles, maintained by the particle filter, and w is a
list of n real numbers wi ∈ R representing the weights, or
likelihoods, of the particles. The number of particles n varies
over time. See Algorithm 1 for a high-level overview of the
localization algorithm. First, each of the particles is updated
based on information from the game controller (the referee).
The position of each particle is then updated based on the
predicted motion, and finally the weight of each particle is
updated based on how well it matches sensor inputs. Lastly, if
any landmarks were visible, new particles are generated based
on the distribution of the particle weights. We will discuss
each step of the localization process in detail.

Algorithm 1 localize(p, s, v) - Update the robot’s pose
based on sensing.

(c, a, w)← p
for i = 1 to n do

(ai, wi)← game controller update(s, ai, wi)
ai ← predict(s, ai)
wi ← update(v, ai, wi)

end for
if v not empty then

(l, w)← resample(v, l, w)
end if
return (compute pose(l, w), l, w)

A. Special Cases — Game Controller Update

First, each of the particles is updated based on information
from the game controller. The game controller sends wireless
messages to the robots from the referee based on the state of
the game — for example, when goals are scored or a half
ends. The game controller update function modifies
the particles in three situations.

1) Side Switch. The global coordinate system used is
relative to which side the robot is playing on, so that the
team’s own goal is always in the negative x direction and
the opponent’s goal is always in the positive x direction.
If the two teams switch colors, e.g., during half time, the

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

x and y coordinates of all the particles are negated and
the angle θ is rotated by 180◦.

2) Initial Positions. At the beginning of a half or after a
goal is scored, the robots must return to their side of
the field for kickoff. If a robot is in an invalid position
or the team requests it, the referee manually places the
robots in a predefined initial position. If according to
the game controller the robots are heading to their initial
positions and the robot’s feet both leave the ground, all
the particles are moved to the vicinity of the predefined
initial positions.

3) Penalties. When a robot is penalized, it is temporarily
removed from the game and then returned to play at the
midfield line on the side opposite the ball, or possibly
at the penalty point for the goalie. The game controller
informs the robot when it is penalized or unpenalized,
and the particles are evenly distributed between the
possible return positions.

B. Robot Motion — Predict Step

In the function predict : S × C → C, the positions of
the particles are updated based on the motion model. The
sensor readings s passed as an input to predict include the
odometry information since the last call to predict, namely the
changes in translation dx and dy and the change in orientation
dθ. This motion is applied to each of the particles with the
addition of noise (see Algorithm 2.)

Algorithm 2 predict(s, c) - Update the particle position
estimates, adding noise.

(x, y, θ)← c
(dx, dy, dθ)← s
dx← N (dx, dx ∗ σ2

mx)
dy ← N (dy, dy ∗ σ2

mx)
dθ ← N (dθ, dθ ∗ σ2

mθ))
dθ ← N (dθ, dy ∗ σ2

myθ)

return

 x
y
θ

 +

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 dx
dy
dθ

Noise is added proportional to the reported distance trav-

elled in the translational components. Rotational noise is added
proportional to both the reported rotation and the reported mo-
tion sideways in the y direction since sidesteps are especially
non-straight. We set the standard deviation of the translational
noise to σmx = 0.3. For the rotational direction, we set
σmyθ = 0.003 and σmθ = 0.4. These values were chosen
through trial and error.

With this motion model, the particles spread out over time
as the robot moves, reducing certainty.

C. Vision — Update Step

In the update step, the likelihood of each of the particle’s
positions is computed based on the current landmarks detected

from vision. The new particle weight is given by

w′ = w
∏
vi∈v

p(vi|c)

where w is the old weight of the particle and p(v|c) represents
the likelihood of making the observation of a landmark v given
that the current configuration is c. We will discuss in detail
the sensor model with which we compute p(v|c) for each type
of landmark.

Algorithm 3 point likelihood(v, obs pos, exp pos, σx,
σθ) - Compute the likelihood of observing an object at
obs pos, but expected to be at exp pos.
dx← |‖obs pos‖ − ‖exp pos‖|
dθ ← angle norm(angle(obs pos)−angle(exp pos))

return e
− dx2

2σ2
x e
− dθ2

2σ2
θ

As part of each landmark’s likelihood computation,
we use the generic function point likelihood, where
point likelihood(v, obs pos, exp pos, σx, σθ) gives the
likelihood of having observed an object at the relative position
obs pos, given that it was expected at a relative position
exp pos (see Algorithm 3). To compute the likelihood, we
compute the difference in magnitude and angle of the two
position vectors, and then take the probability of observing
these values given two Gaussian distributions with standard
deviations σx and σθ, respectively. The Gaussian probability
density function does not need to be normalized since we are
interested only in the relative weights of the particles. σx and
σθ are currently specified manually and fine-tuned through
trial and error; however, it is possible to learn them given a
system to measure the ground truth of the world.

1) Goal Post Sensor Model: The vision module will detect
either a left goal post, a right goal post, or an “unknown”
goal post. For left or right goal posts, we use the result of the
point likelihood function, passing the expected position
relative to the left or right post as a parameter. For unknown
post detections, we call the function with both the position
of the left post and right post, and take the value which
is more likely (a higher return value). The variances in the
Guassians for the goal post sensor model, σx and σθ, increase
with distance as the object moves further from the camera,
pixels become less precise, and small errors in the robot’s
joint angles have increasingly large effects. For goal posts, σx
has a minimum value of 30 cm, and increases linearly with
distance at a rate of 0.175 cm / cm. σθ has a minimum value
of 10◦ and increases at a rate of 1.25◦ / m.

2) Corner Sensor Model: Corners are all similar to un-
known goal posts in that each of the corners is ambiguous,
i.e., it may correspond to multiple landmarks on the field.
There are three distinct types of corners: T, L and X. The
vision module reports the relative position and angle of each
corner, as well as the type. Rather than computing the like-
lihood of observing each possible corner from the map and
choosing the corner of maximal likelihood, as for unknown

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

goal posts, we use a decision tree to efficiently find the nearest
corner on the map to the observed corner. This decision tree
spatially partitions the field, and for each particle, we choose
the corner nearest to the global position where the corner was
observed. We then use the point likelihood function to
compute the likelihood of observing the corner at this position,
and multiply the weight from this function by a Gaussian
probability density representing the likelihood of the observed
angle of the corner, with σ = 10◦. σx for corners begins at 10
cm and increases linearly with distance at a rate of 0.25 cm /
cm. σθ = 10◦ for all distances, since corners are only visible
from a relatively short distance of at most one meter, and the
angular variations are small throughout this window.

3) Line Sensor Model: To model the probability of observ-
ing lines, we use a similar method to Hester and Stone in [13].
First, lines shorter than 10 cm are discarded, as they are often
segments of the center circle or other robots. For each observed
line segment, we take the point p on the line segment nearest
to the robot. Then, we use a decision tree, as with corners, to
find the most likely observed line for the particle (the tree for
lines first splits the search space based on orientation and then
based on position). We then take the point p̂ on the nearest
line segment closest to the robot. The update weight is then
computed by the function point likelihood with p as
the observation in relative coordinates and p̂ as the expected
observation. σx has a minimum value of 40 cm and increases
at a rate of 0.5 cm / cm, while σθ = 30◦. The variance is
quite high for the distance of the lines, because their sensing
with vision is quite poor. We multiply the weight returned by
the point likelihood function by a Gaussian probability
density representing the likelihood of measuring the expected
line at the observed orientation, with a variance of 10◦ (the
orientation of the line returned from vision is quite accurate).
Line detection in vision also suffers from a large number
of false positives, so 0.9 is added to the weight of all line
observations. This prevents a loss of diversity based only on
inaccurate line observations.

4) Center Circle Sensor Model: The center circle is de-
tected in vision by combining shorter straight line segments
into a circle with a common centroid, similar to an algorithm
presented in [14]. The resulting circle is compared to a point
landmark at the center of the field using the point likelihood
function. σx begins at 10 cm and increases at a rate of 0.1 cm
/ cm, and σθ = 10◦.

D. Resample Step

In the resample step, the distribution of the weights of the
particles is used to probabilistically generate a new sample set.
See Algorithm 4 for an overview of the algorithm. First, the
cumulative distribution function is calculated for the particles;
that is, we normalize the weights of the particles, and then
for each particle, we compute the sum of the weights of all
particles before it. This allows us to draw from the distribution
of the particle weights in logarithmic time with a binary
search.

Algorithm 4 resample(v, l, w) - Update the positions l and
weights w of the particles based on observations from vision
v.
cdf ← compute cdf(w)
weighttotal ← 0
i← 1
while i < 300 and weighttotal < α

cdfn
do

if rand() < preset then
(li, wi)← generate from vision(v)

else
(li, wi)← sample(lold, cdf)

end if
weighttotal ← weighttotal + wi

end while
return (l, w)

Then, we generate the new particles. For each particle,
with a probability dependent on the history of the average
weight of the particles, we generate a new particle using sensor
resetting [8]. The particles are generated based on vision of
goal posts, so this step is skipped if no goal posts are visible.
If two goal posts are visible, the particles are generated at
the points on the field where the two circles of the observed
distances from the two goal posts intersect. If only one goal
post is visible, the particles are generated at random in a circle
surrounding that goal post. Noise is applied to the distance and
angle measurements before generating the particles, using the
same Gaussian distributions as the goal post sensing model.
Sensor resetting allows the kidnapped robot problem to be
solved more effectively by moving the hypotheses quickly to
the desired area.

If the particle is not generated using sensor resetting, it is
generated based on the previous distribution of the particles.
A particle is chosen at random from the old distribution using
binary search on the cumulative distribution function. Noise is
applied to the newly generated particles to encourage diversity,
with a variance of 8 cm in the x and y directions, and 10◦ in
the angular direction.

We continue generating new particles until either the max-
imum limit of 300 particles is reached or until the total
weight of the particles is greater than a number inversely
proportional to the total weight of the previous particles. So
as the confidence in our estimates increases, the number of
particles decreases. This behavior allows more particles to be
used when we are uncertain of the robot’s position, and less
when we are more certain, which reduces computation.

E. Final Pose Selection

The particle filter maintains a collection of particles repre-
senting the hypotheses about the robot’s position. However, the
behaviors act based on a single estimate of the robot’s position.
We must fuse the particles into a single position estimate.

First, we find the particle of greatest weight which is within
a set distance and angle of our previous position estimate.
This helps to reduce jumping in the position estimate, and the

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

resulting jumps in the robot’s behavior. We take all particles
within 40 cm of the chosen particle, and choose the centroid
of this cluster as the robot’s position. Choosing the centroid
helps to smooth the robot’s trajectory. If the total weight of
particles within this cluster is small, we allow the robot to
jump to the particle of greatest weight.

Finally, localization reports its certainty in the position
to behaviors. If the standard deviation of all the weighted
particle’s x and y coordinates relative to the selected pose is
lower than a certain threshold, localization reports to behaviors
that the robot is lost.

IV. WORLD MODEL

While the vision module process the current camera im-
age and returns visible objects in relative coordinates, the
robot’s behaviors should take into account objects that are not
currently visible. To do so, the world model keeps track of
objects relevant to the behaviors of the robot, and provides
an estimate of their positions in relative coordinates. These
coordinates can be converted to global coordinates through
localization if required. Recall that the world model process
is a function worldmodel : M × S × V × P → M.
worldmodel(m, s, v, p) takes a prior model m, sensor read-
ings s, vision features v, and pose p, and returns an updated
model. The updated model m′ : O → (xr, yr) can then be
queried for the relative coordinates of objects in the world.

The world model module models the ball, goal, obstacles,
and teammates. In this paper, we focus on the ball and goal
models, as they are essentially driven by vision. The obstacles
are updated by ultrasonic readings, and the status of teammates
are updated by their accelerometers and foot pressure sensors,
which they report through wireless messages.

A. Updating the Ball

When the vision module detects a ball in the current camera
image, the world model returns the same object, and overrides
the current model of the ball. Vision thus provides a short-
circuit to the behaviors when the ball is detected, which
ensures that behaviors always react to the currently visible ball
when one is present, and not a potentially outdated model.

When the ball is not currently visible, the model of the
ball provides an estimate of where it should be, allowing
behaviors to turn the robot’s head and body in the direction if
required. The ball is modeled using multiple hypotheses (each
hypothesis is a possible location of the ball), and the highest
ranked hypothesis is returned by the world model in each call.
However, as more sensor readings are processed, the rankings
of hypotheses change so as to allow the robot to switch to a
more viable hypothesis. Each hypothesis of the ball’s location
has a confidence value ranging from 0 to 1, where 1 represents
full belief, and 0 represents no belief. The confidence value of
the ball decreases based on circumstance, and [12] provides a
detailed description of this process.

When the hypothesis of the ball is derived from the vision
module, i.e., the ball was visible a number of frames ago,
the confidence of the ball will decay over time. The decay

represents the uncertainty of the ball’s position over time,
since RoboCup is a dynamic environment and the ball will
travel around the field. In addition, as the robot walks in the
environment, the confidence of the ball decays further, as the
odometry updates of the robot are noisy. Thus, after the robot
walks a certain distance, the ball’s confidence will drop to a
level such that the hypothesis is not longer viable. Lastly, if
the robot’s gaze is looking in the direction but vision does not
detect a ball, the confidence of the ball drops rapidly, which
ensures that invalid hypotheses of the ball are removed quickly.

Ball hypotheses can also be generated from teammate
messages. When a teammates detects a ball through vision,
the ball’s global coordinates (converted from relative coordi-
nates using the pose from localization) is broadcast to the
entire team. These messages are then used to generate ball
hypotheses in the robot’s world model. The confidence of the
teammate ball hypotheses also decays over time, again because
of the dynamic nature of the RoboCup environment. Similarly,
negative vision detection, i.e., the ball is not detected when the
robot is looking at its estimated position, causes the confidence
to decay rapidly. However, the confidence of a teammate ball
hypothesis does not decay as the robot walks in the field.
Odometry does not affect teammate ball hypotheses because
the location of the teammate ball is given in global coordinates,
which does not change as the robot walks.

The confidence of the ball hypotheses are thresholded into
3 levels: valid and not suspicious, valid but suspicious, and
invalid. These levels correspond to discrete actions that the
behaviors can take on the ball hypothesis. When the hypothesis
is valid and not suspicious, the confidence of the ball’s
position is high, and behaviors can take actions as if the
ball was visible, e.g., the robot can look at the goal while
circling around the ball. If the ball is valid but suspicious,
this means that the world model has a hypothesis of the ball’s
location, but is uncertain. Thus, behaviors should look at the
ball’s estimated location, which will either cause the ball’s
confidence to increase if the ball is visible, or decrease rapidly
if the ball is not where it should be. In either case, the ball
hypothesis will leave the suspicious state. Thus, the suspicious
state is an active-feedback request of the world model.

B. Updating the Goal

The location of the goal in global coordinates is known to
the robot from the map of the field. Given that the localization
module provides a pose of the robot, i.e., its global coordinates,
it is possible to infer the relative position of the goal. However,
pose estimates are noisy and can cause the robot to take a shot
in the wrong direction if localization is in error. For example,
if the pose estimate from localization has an error of 10cm, the
robot may think that it is standing between both goal posts,
when in fact it is slightly to the left of the goal. A straight shot
taken in this position would cause the ball to go out, instead
of scoring a goal. Thus, the world model module models the
goal using vision feedback.

Before taking a shot on the goal, the robot scans its
surrounding to locate the goal visually. However, goal posts

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

can be ambiguous in the camera image (see Fig. 2). The world
model keeps track of goal posts as they are detected by vision,
and merges the information into a single goal after the scan
is completed. The world model keeps track of the 2 goal post
detections with highest confidence. The left and right goal
posts are then identified based on their relative angles to the
robot, e.g., the left goal post is the one on the left.

Fig. 2. a) A yellow goal. b) An ambiguous yellow goal post.

Using the relative angles and distances to the left and right
poles, the world model module then estimates the location of
the goal. In the field, the goal posts are 140mm apart. However,
due to errors in vision detection, the distance estimates to the
goal posts are usually poor (a detection of twice the actual
distance is possible) since it uses heuristics such as the number
of pixels, which is susceptible to errors in color segmentation.
However, the angle estimates are accurate, since these are
derived from the pixel location in the camera image. Thus,
the world model mainly uses the angle estimates to derive the
goal position. While the distance estimates given by vision are
potentially poor, the ratio of distances provide a fair estimate
of the relative difference in distances of the poles to the robot.
For example, if one pole is detected at 1.5 times its actual
distance, then the distance estimate to the other pole is likely
to be also around 1.5 times the actual distance. From the
accurate angle estimates, and the ratio of distances to the poles,
the world model is able to reconstruct the true position and
orientation of the goal relative to the robot.

The goal model is used for kicking accurately at the goal,
when the robot is close to the goal. When the robot is far
from the goal, the pose provided by the localization module
is accurate enough for the robot, especially since the long
distance kicks of the robots have a large variance in angles.

V. CONCLUSIONS

The NAO humanoid robots are used in the Standard Plat-
form League of RoboCup, which is a highly dynamic and
adversarial environment. The goal of the robot team is to score
goals, and to do so effectively, the robots must be capable of
perceiving the world accurately. The features detected by the
vision module are used as the primary inputs to the other
cognitive modules of the NAOs, namely localization, which
determines the global position and orientation of the robot on
the field, and world modeling, which models objects in the
world that are not currently visible, such as the ball.

We formalized the robot cognition domain and problem, as
well as the cognition modules. We then detailed the algorithms
used in the localization module, such as how the particles
are updated. We also described the sensor models we used

in updating the weights of the particles when vision features,
such as lines and corners, as detected, and how resampling
and sensor resetting is performed. We then extract a single
pose of the robot, by fusing information about the particles in
our localization module.

We described how the world model module uses the output
of vision to update models of the ball and goal. When a ball
is visible to the robot, the world model uses the visible ball
as its output; when the ball is not visible, the model of the
ball is used to generate a hypothesis on the ball’s location.
The confidence of the hypothesis decays based on time and
negative vision. If the hypothesis originated from vision and
not from a teammate, then the confidence of the hypothesis
also decays from the robot’s motion.

The localization module provides a global pose of the robot,
and it is possible to derive the relative position of the goal.
However, to take accurate shots at the goal, the world model
creates a model of the goal’s position based on a visual scan
performed by the behaviors of the robot. The angles to the
goal posts, and the relative distances, are used to construct an
accurate model of the goal’s position and orientation relative
to the robot, so that an accurate shot to goal can be performed.

REFERENCES

[1] RoboCup, “RoboCup International Robot Soccer Competition,” 2010,
http://www.robocup.org.

[2] RoboCup SPL, “The RoboCup Standard Platform League,” 2010,
http://www.tzi.de/spl.

[3] Aldebaran, “Aldebaran Robotics - Nao Humanoid Robot,” 2010,
http://www.aldebaran-robotics.com/pageProjetsNao.php.

[4] J. Bruce, T. Balch, and M. Veloso, “Fast and inexpensive color image
segmentation for interactive robots,” in Proceedings of IROS, 2000.

[5] S. Thrun, D. Fox, W. Burgard, and F. Dellaert, “Robust
monte carlo localization for mobile robots,” Artificial Intelligence,
vol. 128, no. 1-2, pp. 99 – 141, 2001. [Online]. Avail-
able: http://www.sciencedirect.com/science/article/B6TYF-42YM3PD-
3/2/d1e9fd756696283bc6a8d9dc14d021ab

[6] J.-S. Gutmann, “Markov-kalman localization for mobile robots,” vol. 2,
2002, pp. 601 – 604 vol.2.

[7] T. Laue, T. J. de Hass, A. Burchardt, C. Graf, T. Röfer, A. Härtl, and
A. Rieskamp, “Efficient and reliable sensor models for humanoid soccer
robot self-localization,” in Proceedings of 4th Workshop on Humanoid
Soccer Robots, 2009.

[8] S. Lenser and M. Veloso, “Sensor resetting localization for poorly
modelled mobile robots,” in Proceedings of ICRA, the International
Conference on Robotics and Automation, April 2000.

[9] Y. Gu and M. Veloso, “Effective Multi-Model Motion Tracking using
Action Models,” Int. Journal of Robotics Research, vol. 28, pp. 3–19,
2009.

[10] P. Rybski and M. Veloso, “Prioritized Multi-hypothesis Tracking by a
Robot with Limited Sensing,” EURASIP Journal on Advances in Signal
Processing, 2009.

[11] N. Mitsunaga, T. Izumi, and M. Asada, “Cooperative Behavior based on
a Subjective Map with Shared Information in a Dynamic Environment,”
in Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2003,
pp. 291–296.

[12] B. Coltin, S. Liemhetcharat, Ç. Meriçli, J. Tay, and M. Veloso, “Multi-
humanoid world modeling in standard platform robot soccer,” in Pro-
ceedings of 10th IEEE-RAS Int. Conf. on Humanoid Robots, 2010.

[13] T. Hester and P. Stone, “Negative information and line observations for
monte carlo localization,” in Proceedings of ICRA, the International
Conference on Robotics and Automation, May 2008.

[14] T. Röfer, T. Laue, J. Müller, A. Burchardt, E. Damrose, A. Fabisch,
F. Feldpausch, K. Gillmann, C. Graf, T. J. de Haas, A. Härtl, D. Honsel,
P. Kastner, T. Kastner, B. Markowsky, M. Mester, J. Peter, O. J. L. Rie-
mann, M. Ring, W. Sauerland, A. Schreck, I. Sieverdingbeck, F. Wenk,
and J.-H. Worch, “B-human team report and code release 2010,” 2010.

Proceedings of the 5th Workshop on Humanoid Soccer Robots @ Humanoids 2010,
Nashville (USA), 2010, December 7
ISBN 978-88-95872-09-4 pp. 47-52

