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Abstract—With advances in walking abilities of autonomous
soccer playing humanoid robots, the world modeling and state
estimation problem moves into focus, as only sufficiently accurate
and robust modeling allows to leverage improved locomotion
capabilities. A novel approach for dense grid-based obstacle
mapping in dynamic environments with an additional application
for automatic gaze control is presented in this paper. It is
applicable for soccer playing humanoid robots with external
sensing limited to human-like vision and strongly limited onboard
computing abilities. The proposed approach allows fusion of
information from different sources and efficiently provides a
single consistent and robust world state estimate despite strong
robot hardware limitations.

I. INTRODUCTION

In recent years autonomous humanoid robots have shown
significant progress in their locomotion capabilities. However,
weight constraints limit the computational power and sensors
that can be carried onboard. Additionally, in the RoboCup
Humanoid League, only human-like passive external sensors
such as vision or hearing are allowed, while active sensors like
LIDARs or RGB-D cameras may not be used. The provided
sensor data additionally is degraded by significant disturbances
during humanoid walking. These strong resource constraints
pose significant challenges for state estimation and behavior
control and demand a system that employs the limited sensing
abilities intelligently.

In this paper, we present an approach that allows au-
tonomous humanoid soccer robots to learn a dynamic grid-
based environment map of their surroundings using vision-
based perception as well as team communication and prior
knowledge about the environment. Furthermore, we present an
approach for active gaze control based on this grid map. Unlike
previous approaches, we do not only consider static landmarks
and a single dynamic object (the ball in robot soccer) for active
gaze control. Instead, our approach considers all dynamic and
static objects for active gaze control and thus is able to not
only improve the performance of self localization and ball
modeling but also of obstacle and environment modeling.

II. RELATED WORK

Due to weight restrictions and the accompanying limitations
in available computational power as well as limited external
sensing abilities and occuring disturbances, world modeling

for humanoid soccer robots is more challenging than for many
other platforms which face no such limitations.

First introduced as evidence grids in [1] occupancy grid
maps are currently the state of the art approach for enabling
navigation of mobile robots in real-world environments [2].
The environment is discretized using an evenly spaced grid,
with each cell holding a probabilistic estimate of its occupancy.
For mobile robots, laser scanners are currently the most
widely used sensor for localization and/or mapping. Different
methods for estimating this occupancy value exist, commonly
used methods are representing the probability of occupancy
using a log-odds representation [3] as well as a method
commonly dubbed ’counting model’ which relies on counting
the frequency of a cell seen as free versus the frequency of the
cell seen as occupied [4]. The presented approach shares the
underlying software for grid map representation with a SLAM
approach used within the RoboCup Rescue environment [5].
For the SLAM application, the environment of the robot is
mostly considered to be static. Less frequently, occupancy grid
maps are used for mapping and state estimation in dynamic
environments [6].

For the humanoid soccer scenario, robot centric obstacle
models are often used successfully. In the Standard Platform
League, grid maps in cartesian [7] or polar coordinates [8]
based on the onboard ultrasonic range sensors of the Nao robot
are used. These local obstacle models work well for short term
planning, but they fail to provide a consistent model of the
robot’s surroundings that stays valid when the robot moves.

Existing approaches for active gaze control often consume
significant computational resources and often are intended to
improve robot performance for a specific task like navigation
[9], [10]. This limits the feasibility of such approaches for
the highly dynamic RoboCup soccer scenario where several
cognitive tasks are competing for sensor input and where low
onboard computational resources are a limiting factor. Only re-
cently first active gaze control approaches have been published
for humanoid soccer Nao robots [11], [12]. However, these
consider only self localization and ball tracking problems,
but not tracking and detection of obstacles, which play an
important role in the adversarial soccer scenario.

behnke
Text-Box
The 6th Workshop on Humanoid Soccer Robots @ Humanoids Conference, Bled (Slovenia), October 2011.



Fig. 1: Data flow and processing steps used by our approach.

III. ROBOT PLATFORM AND ENVIRONMENT

The autonomous humanoid soccer platform used for this
work is based on the HR30 platform by the Hajime research
institute. With additions and modifications the current model
is named DD2010. It has 21 DOF, which are actuated by
Robotis Dynamixel servo motors (18xRX-28, 3xRX-64). Low
level and hard real-time control are provided by a microcon-
troller board with a Renesas SH2 CPU [13], while high level
cognition runs on a FitPC2 board mounted on the back of
the robot, using an 1.6GHz Atom Z530 CPU. Both systems
are connected by a serial (RS232) connection. Among the
internal sensors of the robot are a 3 axis accelerometer board
as well as 3 single-axis angular rate gyroscopes. The joint
servos can be queried to report their measured joint angles. A
more comprehensive overview is available online [14].

The environment is defined by the RoboCup Humanoid
KidSize League [15]. The playing field has a size of 6x4
meters and consists of green carpet with white field lines.
Goals and landmarks are color coded blue and yellow. In a
competition, teams of three fully autonomous robots compete
against each other.

IV. OVERVIEW

The contribution of this paper is twofold: A novel approach
for real-time learning of dynamic obstacle maps and an
approach for active gaze control based on this learned grid
map are introduced. We address both in two distinct Sections.
Fig. 1 gives an overview of the data flow and processing steps
of the developed system. Numerous heteregenous sources of
information are leveraged. Apart from vision-based obstacle
detections, also static prior knowledge about the environment
and dynamically modeled knowledge about moving objects on
the field are used to learn a detailed model of the environment.

The scenario used as an example throughout this work is
depicted in Fig. 2. It uses a full 3D kinematic and approximate
dynamic simulation. The considered robot is situated near the
center circle and oriented towards the yellow goal. Multiple
obstacles simulating opponent robots are surrounding it. A
teammate robot is situated close to the blue goal. The ball
is lying to the left front relative to the robot.

Fig. 2: Top view of the example scenario in simulation

V. OBSTACLE MODEL

With the strong restrictions imposed by the humanoid
platform and RoboCup rules, many proven methods used in
other mobile robots cannot be used. Active external sensors
like laser range finders are not allowed and methods like stereo
vision imply weight penalties due to sensor size and required
onboard processing abilities that prohibit their use. For this
reason, we use an obstacle detection approach based on images
provided by the monocular camera of the robot. As our method
relies on reliable self-localization and obstacle detection by
vision, we provide a short overview of our self localization
approach and vision system.

A. Self-Localization

Self Localization is performed based on the commonly
used and proven Monte-Carlo-Localization approach [16]. We
extend the original approach by using sensor resetting with a
preceding particle maturing step before particles are inserted
into the sample set. Here, samples generated from observation
first have to incorporate observations from a number of differ-
ent landmarks before they are allowed to be inserted into the
particle set used for state estimation. This greatly reduces the
amount of faulty pose hypotheses introduced into the sample
set and hence improves robustness.

Similar to [17], we also track a unique ancestry identifi-
cation number for every created particle which gets copied
when particles are copied during the resampling step. The
particle cluster having the most particles with same ancestry
then is selected for estimating the robot pose and a Gaussian
approximation of this particle cluster is used to estimate pose
uncertainty. Importantly, the eigenvectors and eigenvalues of
the covariance matrix of this Gaussian approximation provide
information about the principal directions of uncertainty of
the robot pose estimate and can be used as a cue as to which
viewing directions for the sensors are beneficial to reduce pose
uncertainty. Being a compact representation of the estimated
robot state, the Gaussian pose estimate can also be easily
transmitted via wireless communication and thus be used for
coordination in the cooperating team of robots.



B. Vision-Based Obstacle Detection

A color-based system based on scanlines similar to the one
described in [18] is used for vision-based object detection. The
grid size used for the scanline-based sampling of the image is
selected depending on the pose of the camera relative to the
playing field. As the ball is the smallest object that has to be
detected, the grid size is adapted to enable detection of the
ball. This means a coarse grid can be used for areas of the
image that are close the robot, while distant areas have to be
sampled using a finer grid.

The RoboCup Humanoid KidSize rules specify the allowed
color and shape of robots and artificial obstacle poles, so all
black objects can be considered to be obstacles in this scenario.
For obstacle detection, vertical scanlines start at the bottom
of the image and processing proceeds towards the top. For
every sample point on the scanline, the corresponding pixel
is either determined to be free, unknown or occupied using
color classification. If a sufficiently large amount of pixels is
determined to be occupied, scanline processing stops and the
scanline is marked as occupied. Both the image coordinates as
well as the robot coordinates of the start and endpoints for the
scanline are written to the obstacle percept, which contains
detection results for all processed scanlines after processing
the image is finished. Fig. 3 (b) shows a camera image with
obstacle points marked by red dots.

(a) Scenario in simulator (b) Camera image

(c) Sensor model

Fig. 3: Illustration of camera sensor model: (a) shows an
overview of the scenario. (b) shows the robot camera image
with detected obstacle points shown in red. (c) shows the
application of the sensor model. The blue arrow depicts the
robot pose. The red lines denote the robot field of view
projected to the ground and the red dot marks the intersection
point of the optical axis of the camera with the ground plane.

C. Learning Dynamic Occupancy Grid Maps

As described in Section II occupancy grid mapping is
a well-established method for many applications in mobile
robotics. However, to the authors’ knowledge, a comprehen-
sive approach fusing vision-based and other information has
not been used so far on resource constrained humanoid robots.
Unlike existing approaches, we estimate the occupancy grid
map in world coordinates and rely on our self-localization
system to provide consistent robot pose estimates. Measures
to increase the robustness of the self localization system
as described in Section V-A make this possible. We thus
employ a mapping with known poses approach, taking the
pose estimates and their covariance for granted.

1) Grid Representation: The map is represented using a
regular grid that discretizes the state space, in this case the
playing field, into rectangular cells. For each of these cells,
the probability of occupancy is estimated. For performance
reasons, our implementation uses a modified counting model
representation for the cell state. Here, a count of the number
of times the cell was seen as free (cf ) as well as occupied
(co) is kept per cell and used to approximate the probability
of occupancy. To account for the dynamic nature of the
environment, the original approach is modified to also keep
track of a reliability estimate for the occupancy, resulting in
the following estimation of the occupancy probability:

p(mi) =


0.5, if cf + co = 0

co
cf + co

∗ r + 0.5 − r

2
, otherwise (1)

with r being a reliability estimate that decays with the time
the cell has not been observed. Using this approach, occupancy
probability can be estimated independently of reliability. If r
reaches zero, the grid cell data is reset to the initial estimate,
as it has not been observed for an extended period of time.

2) Camera Sensor Model: As can be verified in Fig. 3
(c) obstacle perceptions by the monocular camera system
as described in Section V-B projected to the ground bear
similarity to LIDAR data commonly used in 2D SLAM
approaches. While the uncertainties generally are higher, the
principle underlying the map update using an inverse sensor
model is similar to that commonly employed with LIDAR data
[19]. First, the current camera field of view has to be projected
onto the map, so the start- and endpoint of every percept
scanline can be determined in map coordinates. We then use
the Bresenham line algorithm [20] to update all cells between
as free. The angular uncertainty is ignored during the update
of free space because of the added computational complexity
and minor impact on overall accuracy. If scanlines end with an
obstacle, the endpoint is updated using the current estimated
angular uncertainties, by updating the map with a 2D Gaussian
approximation of the endpoint. The approximate projection
method for determining the corresponding covariance matrix
from the estimated angular uncertainties of the robot sensor
system is described in [21] and omitted here for brevity.



(a) Vision-based occupancy grid map (b) Static knowledge

(c) Dynamic knowledge (d) Fused occupancy grid map

Fig. 4: Different sources of obstacle information used: (a)
Vision based map. (b) Static obstacle based map (grid cells
that belong to landmark poles and goals are occupied). (c)
Dynamic obstacle based map (here, the teammate is incorpo-
rated). (d) Resulting map fusing the three preceding maps.

3) Other Sources of Obstacle Information: Obstacles de-
tected by the vision system are only one source of information.
The location of static obstacles is known beforehand and thus
can easily be incorporated into the occupancy grid map. Pose
estimates reported by teammates are also considered. Here,
the Gaussian approximation of a teammate’s current pose
estimate provided by its self-localization system are received
via the team communication system and added to the obstacle
map. The final occupancy grid map thus fuses all available
sources of information containing information about obstacles.
It can easily be extended for other sources of information
about obstacles, for example a dedicated detector for opponent
players. Fig. 4 provides an overview of the different types of
obstacle information and the fused occupancy grid map.

VI. ACTIVE GAZE CONTROL

There are several state estimation systems that are com-
peting for information provided by the camera system of the
robot. Self localization relies on acquisition of known static
landmarks like goal poles, field lines or field line intersections.
Ball modeling requires tracking of the most dynamic object
on the field, the ball. Obstacle modeling on the other hand
requires regularly scanning the area of the field close to the
robot in all direction as well as looking into the direction of
already known obstacles.

The occupancy grid map provides information about dy-
namic and static objects that are relevant for obstacle avoid-
ance for the robot. Known static objects as defined by the field
layout and setup of the RoboCup Humanoid KidSize League
are relevant for self-localization. The ball model provides a
Gaussian state estimate of the ball, incorporating position and
velocity as well as the accompanying covariance matrix.

Fusing these sources of information, an entropy map that
provides the base for an entropy based active gaze control
approach can be computed. For the vision based occupancy
grid map, Shannon entropy can be determined based on
the binary estimate of the probability of occupancy that is
available for each cell

H(mi) = − (p(mi)log2p(mi)

+ (1 − p(mi))log2(1 − p(mi))) (2)

where mi is the grid cell with index i. Using this equation
for every grid cell of the occupancy grid map an approximate
entropy map can be created. Next, static landmarks used for
self-localization and the ball state estimate are merged to
this map. By using different factors during this merging step,
prioritization can take place. Among the considered variables
for this prioritization are the robot pose and ball state estimates
as well as the current role of the robot. Fig. 5 shows an
overview of the different sources used and the fused entropy
grid map.

(a) Entropy of occupancy grid map (b) Entropy of static knowledge

(c) Entropy of dynamic knowledge (d) Fused entropy grid map

Fig. 5: The learned vision-based occupancy grid map is
transformed into the entropy representation in (a). Static (b)
and dynamic knowledge (c) are added into the entropy grid
map. The resulting fused entropy grid map is shown in (d).

4) Candidate Score: As an exhaustive search for the best
gaze direction for every cognition cycle is computationally not
feasible on the resource constrained humanoid robot platform,
we employ a sampling based approach. A list of candidate
gaze directions is kept during the update phase of the entropy
map. These candidate gaze directions are represented by the
intersection point of the optical axis of the camera with the
ground plane. For every update of a cell ci of the entropy
grid map, first a check is performed if ci is inside the area of
feasible gaze directions. If this test passes, a weight depending
on the position of the cell in the feasible area is computed:

wspace(ci) := wspace,d(ci) · wspace,β(ci), (3)



with wspace,d(ci) being a weight for the distance of ci from
the robot and wspace,β being a weight for the angle from the
robot to ci around the vertical axis. The current head pose is
weighted using a similar approach:

whead(ci) := whead,α(ci) · whead,β(ci), (4)

with whead,α(ci) being a weight depending on the change in
angle the head pitch servo has to perform and whead,β(ci)
being a weight depending on the change in angle the head
yaw servo has to perform to point the optical axis at ci. For
both wspace(ci) and whead(ci) we currently employ simple
triangular functions that have their maximum when the needed
angular change amounts to zero. The total weight is given by:

w(ci) := wspace(ci) · whead(ci) (5)

Based on this weight and the sampled entropy value at the
cell position H(ci), two candidate points ca and cb can be
compared:

pca < pcb := w(ca) ·H(ca) < w(cb) ·H(cb) (6)

Given the order defined by this comparison operator, the
candidate point is inserted into the candidate point list if the
distance between it and the already existing points in the list
is above a threshold value. Using this approach, redundant
locations in the gaze candidate point list are surpressed. To
keep computation time low, a small list is used in practice,
keeping only the highest scoring candidate points.

5) Field of View Entropy: The list of candidate points as
described previously is based only on the entropy value of a
single grid cell. Therefore, it remains to be shown how an
approximate information gain for the given candidate points
can be computed. For every one of the candidate points, the
approximate field of view entropy (FOVE) is determined by
fitting a Gaussian into the projection of the corresponding
camera field of view projected to the ground. The Gaussian
approximation leads to higher weights for objects closer to the
camera center, which is desirable as partial visibility of objects
near the border of camera images can cause detection failures
in image processing. For each candidate point at position
(x, y)T the mean field of view entropy is determined by:

HFOV E(x, y) =

∑
xi

∑
yi

(1 − ∆(xi, yi)) ·H(ci)

n
, (7)

where (xi, yi)
T takes the position of every cell within the

approximated FOV and n denotes the amount of cells con-
sidered in the weighted entropy sum. ∆(xi, yi) describes the
Mahalanobis distance relative to the fitted Gaussian. As the
mean field of view entropy only has to be computed for a
small number of candidate points, real-time computation is
feasible. The candidate point scoring the highest mean field
of view entropy is selected as the next gaze point and handed
off to the camera control system.

Fig. 6: Timing plot for obstacle mapping (blue), entropy map
estimation (red) and the sum of both (green).

VII. EVALUATION

Multiple factors can be considered for the performance eval-
uation of the system. Among those are the runtime efficiency
as well as a comparison to a previously employed approach. A
comprehensive test scenario employing the obstacle map for
path planning cannot be shown here, as this is the subject of
current work. All tests during evaluation have been performed
using real robot hardware.

A. Runtime Performance

The approach has to run in real-time on the restricted
onboard hardware of humanoid robots. It has to allow for
processing of every image acquired by the camera, so reaction
time of the system is as fast as hardware permits. This means
that the whole cognition loop has to run at a rate of 30Hz. We
performed several measurements using the onboard 1.6GHz
Atom CPU. As can be seen in Fig.6 the update rate is kept
when using a grid map of 5cm resolution and using obstacle
mapping and active gaze control. The occupancy grid map is
updated in a mean time of 3.8 ms with little standard deviation,
while entropy map estimation takes between 5.4 and 15.6
ms. In total, a runtime of 20 ms is never exceeded, which
is sufficient to keep the total cognition cycle time below the
33 ms that are needed to process every image on our system.
The data was recorded using a simulated match situation with
the robot first taking the goalie role and then switching to the
striker role at the 160 seconds mark.

B. Obstacle Mapping Performance

Using a simple robot centric obstacle model for comparison,
it can be shown that the presented approach exhibits less
error and models obstacles in the environment with higher
accuracy. For evaluation, a single obstacle pole was placed
in the field of view of the robot at different distances. Ev-
ery 500ms the distance of all estimated obstacle positions
to the real obstacle position was computed. The standard
deviation of these samples was then taken as a measure of
obstacle modeling accuracy. As can be seen from Table I,
the proposed approach outperforms the previously used sector-
based approach in all experiments, exhibiting a lower standard
deviation of the error for the obstacle position estimate. A



video showing the qualitative performance of the system on
a robot moving towards the ball in the presence of obstacles
is available online1. To minimize bandwidth requirements, the
grid cell state is represented by the three discrete options free,
occupied and unknown here.

experiment 1 experiment 2 experiment 3
σ sector model 227.92 mm 227.2 mm 383.0 mm
σ obstacle grid map 33.0 mm 50.69 mm 192.55 mm

TABLE I: Standard deviation of obstacle model accuracy.

C. Active Gaze Control Performance

Using a manual camera control system similar to those
used in other soccer robots as a baseline, it can be shown
that the proposed approach for active gaze control enables
better coverage of the environment of the robot while at the
same time considering all important perception tasks. In the
experiment, the robot moved a predefined trajectory, while
looking at the ball situated at the center circle. The ”look
at ball” head behavior is compared to the active gaze control
approach in Table II. A video of the system used for active
gaze control on real robot hardware is available online2.

experiment 2 active gaze control look at ball
ball model validity [%] 79.96 97.01
soccer field observed [%] 75.31 53.33
robot’s front observed [%] 100.00 45.02

TABLE II: Observation coverage when the robot moves
around the soccer field.

VIII. CONCLUSION

A novel approach for obstacle mapping and active gaze
control is presented in this paper. Inspired by well established
approaches for solving the SLAM problem, a real-time grid
based obstacle map of the environment is learned online
during operation of a severly resource constrained humanoid
robot using only onboard sensors and processing. Additionally,
an active gaze control system accounting for the competing
cognitive tasks of ball tracking, self localization and obstacle
detection is presented, which also runs in real-time.

Directions of future work are the use of the presented results
for realtime robot path planning and cooperative behavior.
Also, feeding back information about the planned path to
the active gaze control system as well as exchange of maps
between robots will be investigated.
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