
Armin Hornung and Maren Bennewitz

University of Freiburg, Germany

Search-Based
Footstep Planning

Joint work with J. Garimort, A. Dornbush, M. Likhachev

Motivation

BHuman vs. Nimbro, RoboCup German Open 2010

Photo by J. Bösche, www.joergboesche.de

Path Planning for Humanoids

 Humanoids can avoid obstacles by
stepping over or close to them

 However, planning whole-body motions
has a high computational complexity

 Footstep planning given possible foot
locations reduces the planning problem

[Hauser et al. ‘07, Kanoun ’10, …]

Previous Approaches

 Compute collision-free 2D path first,
then footsteps in a local area

 Problem: 2D planner cannot consider all
capabilities of the robot

[Li et al. ‘03, Chestnutt & Kuffner ‘04]

start goal

Previous Approaches

 Footstep planning with A*

 Search space: (x,y,θ)

 Discrete footstep set

 Optimal solution with A*

 Probabilistic Footstep Planning

 Search space of footstep
actions with RRT / PRM

 Fast planning results

 No guarantees on optimality
or completeness

[Kuffner ‘01, Chestnutt et al. ‘05, ‘07]

[e.g. Perrin et al. ‘11]

 State

 Footstep action

 Fixed set of footstep actions

 Successor state

 Transition costs reflect execution time:

Footstep Planning

costs based on the
distance to obstacles

constant step cost

Euclidean distance

Footstep Planning

start

Footstep Planning

start

Footstep Planning

start

Footstep Planning

transition costs

path costs from
start to s

s

estimated costs
from s’ to goal

start

s’

Footstep Planning

s

start

s’
planar obstacle

?

Heuristic

 Estimates the costs to the goal

 Critical for planner performance

 Usual choices:

 Euclidean distance

 2D Dijkstra path

expanded
state s'

goal
state

h(s')

Efficient Collision Checking

 Footprint is rectangular with arbitrary orientation

 Evaluating the distance between foot center and
the closest obstacle may not yield correct or
optimal results

 Recursively subdivide footstep shape

[Sprunk et al. (ICRA ‘11)]

 = distance
to the closest obstacle
(precomputed map)

Search-Based Footstep Planning

 Concatenation of footstep actions builds a
lattice in the global search space

 Only valid states after a collision check
are added

 Goal state may not be exactly reached,
but it is sufficient to reach a state close
by (within the motion range)

current state

goal state

Search-Based Footstep Planning

 We can now apply heuristic search
methods on the state lattice

 Search-based planning library:
www.ros.org/wiki/sbpl

 Footstep planning implementation based
on SBPL:
www.ros.org/wiki/footstep_planner

http://www.ros.org/wiki/sbpl
http://www.ros.org/wiki/footstep_planner

Local Minima in the Search Space

start goal

expanded states

 A* will search for the optimal result

 Initially sub-optimal results are often
sufficient for navigation

 Provable sub-optimality instead of
randomness yields more efficient paths

Anytime Repairing A* (ARA*)

 Heuristic inflation by a factor w allows
to efficiently deal with local minima:
weighted A* (wA*)

 ARA* runs a series of wA* searches,
iteratively lowering w as time allows

 Re-uses information from previous
iterations

[Likhachev et al. (NIPS 2004), Hornung et al. (Humanoids 2012)]

Interactive Session III (Sa., 15:00)

ARA* with Euclidean Heuristic

start goal

w = 10 w = 1

ARA* with Dijkstra Heuristic

Performance depends on well-
designed heuristic

w = 1

Randomized A* (R*)

 Iteratively constructs a graph of
sparsely placed randomized sub-goals
(exploration)

 Plans between sub-goals with wA*,
preferring easy-to-plan sequences

 Iteratively lowers w as time allows

[Likhachev & Stentz (AAAI 2008),

Hornung et al. (Humanoids 2012)]

Interactive Session III (Sa., 15:00)

R* with Euclidean Heuristic

start goal

w = 10 w = 1

Planning in Dense Clutter Until
First Solution

A*
Euclidean heur.

R*
Euclidean heur.

ARA*
Euclidean heur.

ARA*
Dijkstra heur.

11.9 sec. 0.4 sec. 2.7 sec. 0.7 sec.

Planning in Dense Clutter Until
First Solution

 12 random start and goal locations

 ARA* finds fast results only with the 2D Dijkstra
heuristic, leading to longer paths due to its
inadmissibility

 R* finds fast results even with the Euclidean
heuristic

Planning with a Time Limit (5s)
R*
Euclidean heuristic

ARA*
Euclidean heuristic

ARA*
Dijkstra heuristic

start
goal

start

goal

clutter

fails, requires 43 sec.

fails, requires 92 sec.

final w=1.4 final w=7

final w=8 final w=1.4

Anytime Planning Results

 Performance of ARA* depends on well-
designed heuristic

 Dijkstra heuristic may be inadmissible
and can lead to wrong results

 R* with the Euclidean heuristic finds
efficient plans in short time

Dynamic A* (D*)

 Allows for efficient re-planning in case of

 Changes in the environment

 Deviations from the initial path

 Re-uses state information from previous
searches

 Planning backwards increases the efficiency
in case of updated localization estimates

 Anytime version: AD*

[Koenig & Likhachev (AAAI ‘00), Garimort (ICRA ’11)]

D* Plan Execution with a Nao

Efficient Replanning

 Plans may become invalid due to changes
in the environment

 D* allows for efficient plan re-usage

2966 states, 1.05s 956 states, 0.53s

Different Footstep Sets for Nao

 and lead to
significantly shorter paths

 has a significantly
higher planning time

 Result: yields shortest
paths with efficient
planning times

Adaptive Level-of-Detail Planning

 Planning the whole path with footsteps may not
always be desired in large open spaces

 Adaptive level-of-detail planning: Combine fast
grid-based 2D planning in open spaces with
footstep planning near obstacles

Adaptive planning

[Hornung & Bennewitz (ICRA ‘11)]

Adaptive Level-of-Detail Planning

 Allow transitions between all
neighboring cells in free
areas and between all
sampled contour points
across obstacle regions

 Traversal costs are
estimated from a pre-
planning stage or with a
learned heuristic

 Every obstacle traversal
triggers a footstep plan

Adaptive Planning Results

start

goal

<1 s planning time
High path costs

29 s planning time <1s planning time,
costs only 2% higher

2D Planning Footstep Planning Adaptive Planning

Fast planning times and efficient solutions
with adaptive level-of-detail planning

Current Work: Planning in 3D

Summary

 Anytime search-based footstep planning
with suboptimality bounds: ARA* and R*

 Replanning during navigation with AD*

 Heuristic influences planner behavior

 Adaptive level-of-detail planning to
combine 2D with footstep planning

 Available open source in ROS:
www.ros.org/wiki/footstep_planner

 Interactive Session III (Saturday, 15:00)

http://www.ros.org/wiki/footstep_planner

Thank you!

