
UT Austin Villa 2013: Advances in Vision, Kinematics, and Strategy

Jacob Menashe, Samuel Barrett, Katie Genter, and Peter Stone

Department of Computer Science

The University of Texas at Austin

{jmenashe, sbarrett, katie, pstone}@cs.utexas.edu

Abstract—In RoboCup, although the fields are standardized
and color coded, the area outside the fields often contains many
objects of various colors. Sometimes objects off the field may
look very similar to balls, robots, or other objects normally
found on the soccer field. Robots must detect all of these objects,
and then differentiate between the true positives and false
positives. This paper presents a new method using Gaussian
fitness scores to differentiate between true positives and false
positives for balls, robots, and penalty crosses. We also present
some other improvements in our code base following our 2012
championship, such as our usage of a virtual base for forward
kinematics calculations, our ability to flexibly transition player
roles given dynamic numbers of teammates, and our ability to
quickly integrate new kicks of varying speeds into our strategy.
With these improvements, our UT Austin Villa team finished
third in the Standard Platform League at RoboCup 2013.

I. INTRODUCTION

RoboCup, or the Robot Soccer World Cup, is an inter-

national research initiative that works to advance robotics

and artificial intelligence by using the game of soccer as a

test domain. The long-term goal of RoboCup is to build and

program a team of 11 humanoid robot soccer players that

can beat the best human soccer team on a real soccer field

by the year 2050 [1].

RoboCup is organized into several soccer leagues, includ-

ing both simulation leagues and leagues that compete with

physical robots. Our team, UT Austin Villa1, competes in

the Standard Platform League (SPL)2. The SPL uses teams

of identical Aldebaran Nao humanoid robots3, making it

essentially a software competition. In the SPL, each team

competes with up to 5 Nao robots. Teams compete on a 9 by

6 meter field, with two identical yellow goals and white tape

marking the lines. See Figure 1 for an example of the robots

and field setup. UT Austin Villa has competed in the SPL

with the Nao robots every year since the Nao was introduced

in 2008. Over these years, we have built a substantial code

infrastructure for robot soccer that served as the base for our

championship in 2012 [2], [3].

Many objects surround a RoboCup field, many of which

may look similar to a ball or an opponent. For example, little

children wearing orange shirts near the field may look like

orange balls, while maroon flower pots scattered around the

field may resemble maroon opponents. Hence, it is critical

for a robot to be able to evaluate possible detections and

1http://www.cs.utexas.edu/˜AustinVilla/
2http://www.tzi.de/spl/
3http://www.aldebaran.com/

Fig. 1: 6 Naos on the 2013 RoboCup SPL field.

accurately determine which instances are true positives. In

this paper, we present some of the major improvements

in our code base that were utilized at RoboCup 2013.

Specifically, we present our usage of Gaussian fitness scores

to evaluate possible detected objects. In the past, our team

used a series of binary cutoffs for sanity checks on each

object measurement to determine which detected objects are

true positives. In this work, we present a better method in

which, for each detected object, we simultaneously evaluate

a variety of object measurements to determine if the detected

instance is indeed the object of interest (a “true” positive).

Additionally, we present our usage of a virtual base for

forward kinematics calculations. We also discuss our ability

to flexibly transition player roles given dynamic numbers of

teammates and our ability to quickly integrate new kicks of

varying speeds into our strategy.

A video highlighting our performance at RoboCup 2013

can be found at http://goo.gl/fcnO9V.

II. RELATED WORK

A. Object Detection

We researched a number of alternative methods for object

detection in RoboCup when designing our approach. The B-

Human team uses a sequential sanity checking method for

ball detection[4], similar to what we developed in [2]. The

Dutch Nao Team similarly uses blob detection as an under-

lying mechanism for object detection, and use width- and

height-based sanity checking for distinguishing goals from

non-goals [5]. rUNSWift’s approach differs from the blob

detection methods in that they use feature descriptors and a

http://www.cs.utexas.edu/~AustinVilla/
http://www.tzi.de/spl/
http://www.aldebaran.com/
http://goo.gl/fcnO9V
behnke
Schreibmaschine
In Proceedings of 8th Workshop on Humanoid Soccer Robots13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013.



modified ICP algorithm to map field objects to expectations

[6]. To our knowledge, we are the only team using Gaussian

fitness computations for simultaneous feature evaluations on

detected object candidates.

B. Virtual Base

We found little discussion on the topic of coordinate frame

selection in RoboCup literature. B-Human uses a torso-

centered coordinate frame that is rotated parallel with the

ground plane [4]. This coordinate frame can be obtained by

translating the virtual base coordinate frame along the vector

(0, 0, h)⊺, where h is the torso height. In other words, the

virtual base is B-Human’s TorsoMatrix projected onto

the ground. B-Human’s TorsoMatrix and our virtual base

are analogous to the base link and base footprint

coordinate frames found in ROS [7], respectively.

C. Transitioning Player Roles

Our dynamic transitioning of player roles such that key

roles were filled quickly and efficiently was motivated

by previous work completed by the UT Austin Villa 3D

simulation team[8]. In their work they found a valid role

assignment function that minimized longest distance from

each player to it’s target location, avoided collisions, and

was dynamically consistent. However, in our work we focus

more on ensuring players filling critical roles can arrive in

their new location quickly. Additionally, we do not account

for potential collisions when deciding which players should

fill which roles, as our estimates of where teammates and

opponents are on the field are imperfect.

III. UTILIZING GAUSSIAN FITNESS SCORES FOR OBJECT

DETECTION

This year we introduced a significant improvement to our

object detection system [2] in the form of Gaussian fitness

estimates based on perceived object statistics. Our method

involves empirically determining a mean feature vector for

the target object based on a number of quantifiable measure-

ments. We then evaluate potential detections with respect

to this mean and determine a confidence score for each

detection. This method served as our primary sanity checking

mechanism for ball, robot, and penalty cross detection. The

sequential sanity checking implementations described in [2]

proved adequate for field lines and goals, so these were not

prioritized for conversion to the Gaussian fitness checking

method.

A. Measured Statistics

To illustrate our method we present a high-level overview

of our detection algorithm with the statistics measured for

each object. We begin by classifying the image and forming

blobs as described in [2]. Algorithm 1 describes the general

detection process. Our method is concerned with the imple-

mentation of getFitnessValues.

For orange blobs (i.e. potential ball detections), we com-

pute the following:

• Orange percentage within the ball

Algorithm 1 Detection process for an arbitrary object.

procedure DETECTOBJECT(o)

I ← getCameraImage()
C ← classifyImageColors(I)
Bo ← getBlobsByColor(C, getColor(o))
F o ← getFitnessValues(Bo)
b, f ← argmaxb∈Bo,f∈F o F o

if f > θ then

return b

end if

return nil

end procedure

• Green or white percentage below the ball

• Circle deviation

• World height (i.e. the Z coordinate in the world frame)

• Discrepancy between width-based and kinematics-based

distance estimates

• Distance from field edges along the ground plane (0

within the field)

• Velocity between frames

Note that width-based distances are determined with

trigonometry based on the detected and known ball width,

and kinematics-based distances use image coordinates and

the camera matrix to project pixels onto the ground plane.

For each of these measurements we empirically determine

a mean and one-dimensional standard deviation by exam-

ining individual measurements from known detections. We

compile the means into a single feature vector, and use the

standard deviations to define a diagonal covariance matrix.

Some measurements, such as orange percentage, are bounded

by a particular range and thus may not exhibit truly Gaussian

fluctuations about a mean. Analysis of past readings may

show an average orange percentage of 90%, but it is clear

that 100% is optimal and we should not be penalizing blobs

for having all orange pixels. In cases where the measurement

range is bounded, we select the optimal value as the mean.

For the orange percentage measurement, this implies that we

set the mean to 100%.

For completeness, we also present the statistics used for

robots:

• Width over height

• Height over width

• (Kinematics-based distance)/(width-based distance)

• (Kinematics-based distance)/(height-based distance)

• Percentage of correct jersey color found in the jersey

blob

• Percentage of green/white/grey pixels found below the

jersey

• Percentage of jersey color/green/white/grey pixels found

along the whole robot

• Chest height

As well as for the penalty cross:



• Green percentage in each octant around the cross

• Distance from known cross location

• Cross height

• Cross width

Once we have computed a set of measurements about

a particular blob, we organize these measurements into a

vector which is then analyzed with a multivariate Gaussian

distribution to produce the fitness computation.

B. Fitness Computation

To compute the fitness P for a particular detection, we

use the standard multivariate Gaussian PDF G with mean µ

and covariance Σ, weighted such that P (µ, µ,Σ) = 1.0.

P (x, µ,Σ) =
G(x, µ,Σ)

G(µ, µ,Σ)
(1)

This method allows us to simultaneously evaluate a variety

of object measurements in a manner similar to a support

vector machine (SVM). Rather than identify a series of

binary cutoffs for sanity checks, we essentially construct a

hyperplane for binary classification. In practice, this method

was comparable in effectiveness to our earlier approaches

of hand-tuning sequential sanity checks with a handful of

added advantages, including the ability to discern between

competing candidates and the ability to process measure-

ments in parallel. In circumstances where a detection lies

near a threshold for one particular measurement, our method

is still able to recover the object of interest consistently

based on the other measurements being considered. In a

sequential checking system, it is far more likely for a single

bad measurement to throw off an entire detection.

More sophisticated classification techniques such as SVM

were considered as well, but our method was chosen based

on the following advantages:

• Mean and standard deviation values can be estimated

and adjusted with ease, without the need for training.

• Feature vectors can be understood and debugged by a

human.

• Computations are fast and can be carried out on a large

number of candidates each frame.

The output of our method is naturally a real number in the

range [0,1]. Currently we use a cutoff of 0.3 to distinguish a

true positive from a false positive, corresponding to approx-

imately 1.5 standard deviations in the univariate case. Our

future work includes making better use of these confidence

values, either with individual object filters or in the overall

localization system.

IV. VIRTUAL BASE FOR FORWARD KINEMATICS

CALCULATIONS

A standard implementation concern on multi-pedal robot

systems is the choice of a consistent egocentric coordinate

frame for describing world objects and body parts. A good

choice of coordinate frame will allow the programmer of

such a system to intuitively understand the spatial rela-

tionships between these objects in the environment. For

humanoid robots, a simple solution is to use the point in

Fig. 2: Front and top views to demonstrate the location of the virtual
base, by the striped ellipses between the feet (front view) and in
the middle of the head (top view).

the torso at which all kinematic chains between extremities

coincide.

In RoboCup, the torso-centered coordinate frame can be

problematic. The field is flat, and objects of interest are

almost always on the ground. Any intuitive coordinate frame

should therefore have no X or Y rotation and should be

centered at some point on the ground plane. This ensures

that world objects on the field can be represented with a

z-coordinate of 0. Additionally, a robot’s egocentric frame

should remain at some location that is central to the robot,

allowing for symmetric definitions when designing body

movements. For example, stepping forward with the left foot

might require a relative foot position of (x, y, 0), which

would imply that stepping forward with the right would

require a relative foot position of (x,−y, 0).
No body part exists on a humanoid that meets these

constraints. The centered body parts of the robot, such as

the torso and head, are all elevated, with their ground offsets

shifting as the robot moves. Likewise the ground-level body

parts, i.e. the feet, are not in the center. We therefore chose

to construct a virtual body part to meet these criteria, which

we call the virtual base.

Intuitively, the virtual base is the point on the field directly

below the torso with no X or Y rotations relative to the

ground plane, and no Z rotation relative to the torso. Figure 2

shows the top and side views of the virtual base location for

a particular pose.

The base transformation matrix is constructed and applied

to other body parts as described in Algorithm 2, using

pre-calculated transformation matrices in the torso-centered

coordinate frame. The stance foot is taken as the foot with

the greatest sum of pressure readings, on the assumption

that the foot that the robot is standing on will experience

greater pressure than the other foot. While the Nao pressure

sensors aren’t accurate enough for precise calculations, this

sort of binary decision is quite accurate in practice. When

the pressure sensors yield similar values, this indicates that



both feet are flat on the ground. In this case, the position

and rotation of the virtual base is the same regardless of the

stance foot that is selected.

Algorithm 2 Construction and application of the virtual base.

Once the virtual base is computed in the torso coordinate

frame, all other body parts are converted to the virtual base

frame and placed in Bv .

Compute tf , the torso in the foot frame:

f t ← stance foot in torso frame

tf ← (f t)−1 = torso in foot frame

Compute vf , the virtual base in the foot frame:

vf ← identity transform

(vfx , v
f
y , v

f
z )← (tfx, t

f
y , 0)

vf ← rotateZ(vf , getAngleZ(tf ))

Compute vt, the virtual base in the torso frame:

vt ← globalToRelative(vf , tf)

Compute all body parts in the virtual base frame:

Bt ← Body parts in torso frame

Bv ← ∅
for all bt ∈ { Body Parts } do

bv ← globalToRelative(bt, vt)
Bv ← Bv ∪ {bv}

end for

return Bv

This coordinate frame is used throughout the codebase

for visual object positions, body part transforms, and body

motions. This choice of coordinate frame is intuitive for test-

ing and debugging, allows for simple conversions between

local and global coordinates, and ensures that coordinates are

consistent over changes in stance.

V. BEHAVIORAL IMPROVEMENTS

In addition to the improvements discussed in Sections III

and IV, UT Austin Villa made some other improvements

between RoboCup 2012 and RoboCup 2013 that were also

apparent in games. Most notable was our ability to flexibly

transition player roles given dynamic numbers of teammates

and our ability to quickly integrate new kicks with varying

speeds into our strategy.

A. Transitioning Player Roles Based on the Number of

Active Players

Given that teams played with five players at RoboCup

2013, as opposed to the four players used in 2012, the ability

to coordinate players became even more important in 2013.

In addition, given the number of robots that are removed

from the field due to penalties and failing hardware, it is vital

that the team be able to adapt to a variety of players being

on the field. UT Austin Villa had planned about strategies

for these settings in past years, but this year we introduced

code that allowed us to quickly adapt the strategy of the team

during the competition itself.

The strategy works by having each robot communicate

both its position as well as a bid on being the chaser

whenever it sends messages to its teammates. This bid is

calculated based mainly on the robot’s distance from the

ball, its angle to the ball, and whether chasing the ball

would require going downfield or upfield. The robot with

the best bid becomes the chaser and tries to approach and

kick the ball according to the kicking strategy described

in Section V-B. The remaining players are assigned to the

remaining roles, such as playing as a forward, defender, or

midfielder. Each of these roles is specified using parameters

such as the desired positions relative to the ball, maximum

distances to be traveled upfield, and how the robot can

position to prevent open shots at its own goal.

If fewer than five robots are on the field, roles are filled in

order of priorities that are assigned to each position. Given

the roles that are currently active, robots are assigned to

these roles based on their distances from the roles’ desired

locations. As many of these role positions are symmetric with

respect to the side direction, the roles are largely assigned

based on the difference between the robot’s location and the

role’s desired location along the dominant field dimension.

To adapt more fully to the current game situation, the

priorities and locations of the roles can be adjusted based

on the region in which the ball is located. In addition, these

formations can be adjusted based on the current game score

as well as the time remaining in the game. All role locations

and priorities can be quickly adjusted via configuration files.

In addition to these changes, the strategy was improved

to more fully reason about passing and set plays. While the

UT Austin Villa team previously positioned robots in order to

receive passes and preferred passing to teammates, the robots

did not communicate their pass intentions. One improvement

introduced by the 2013 team was to communicate when a

pass was about to occur, which allowed the receiving player

to adapt to the expected destination of the pass. Furthermore,

more set plays for the kick off were introduced, and the

robots autonomously chose which set play to use based on

the team’s locations as well as the location of the opponents.

Similarly to the role configurations, these set plays were

easily specified via configuration files. As discussed in [3],

the simulation tool developed by the UT Austin Villa team

proved invaluable to testing the various formations and set

plays that were used in competition.

B. Quickly Integrating Kicks of Varying Speeds

UT Austin Villa has a kick engine that can kick various

distances in addition to several kicks that can be executed

directly from the walk engine. In addition, UT Austin Villa

also developed a longer kick based on one designed by

Northern Bites [9] in the 2012 competition. This kick was

added to adapt to the larger 9m by 6m field that was

introduced for the 2013 competition. All of these kicks

require different amounts of execution time, go different

distances, and travel within different accuracy ranges of

their desired direction. These kicks can all be integrated by

planning about the destination of the kick and how the team



Fig. 3: Setup for the baseline and velocity experiments.

would like to move the ball as described in [10]. In addition,

we introduced some reasoning to avoid making slower kicks

when opponents were detected within a specified distance

and angle to the kicker. This adjustment served to avoid

having shots blocked by opponents walking into the desired

path of the kick while the kick is executing. The ease of

adapting the strategy to the lengths of kicks proved especially

useful due to the differences in the kick distances at different

venues.

VI. EVALUATION

Our method of computing fitness scores in object detection

provides a useful improvement over binary accept/reject

approaches. Here we show the ability of the ball detector

to consistently and significantly differentiate and rank its

detections. We present a variety of experiments involving

an object of interest (the left ball) and a decoy (the right

ball). These experiments show that the ball detector is able

to use computed fitness values to effectively rank and discern

between the two balls.

A. Baseline

We begin with our baseline in which two nearly identical

ball detections are found side-by-side, as shown in Figure 3.

Ideally, two such detections would yield identical fitness

values. We sampled fitness computations from 500 frames

and obtained mean values of .92 and .89 with standard devi-

ations of .04 and .02 for the left and right balls, respectively.

Assuming Gaussian distributions, this implies a 73% chance

of picking the left ball over the right. This bias can be

explained with subtle differences in lighting conditions. The

following experiments exhibit more pronounced biases that

are the result of significant differences in fitness values.

B. Velocity

To demonstrate the effectiveness of detection ranking, we

begin by looking at velocity measurements. Accounting for

perceived velocity allows the ball detector to avoid switching

randomly between ball candidates when there are multiple

valid detections in view. We use the same setup as in Fig-

ure 3, however in this case we include velocity measurements

as part of the fitness computation. By setting the expected

velocity to 0, we can essentially tell the detector to prefer

choosing one ball consistently rather than switching back

Fig. 4: Setup for the height experiment.

and forth. After ranking detections based on the first frame

of data, the detector settles on the left ball, which biases

all subsequent detections. As we see in Table 1, the chance

of switching back to the right ball is significantly reduced.

It is worth noting that this distinction can be arbitrary - if

the detector were to have selected the right ball first, then

that would bias future estimates toward the right ball. In the

setting of a RoboCup game, our teammates share estimates of

the ball location. The effect of this is that the ball selected by

the team is reinforced as the true ball, reducing the possibility

that a ball off the field might be chosen by a particular robot.

C. Height

In this experiment we place an object under the right ball

to increase its height, which in turn increases the discrepancy

between width-based distance and kinematics-based distance

calculations. This is demonstrated in Figure 4. Velocity

measurements were disabled for this experiment to remove

the bias toward the ball that was previously selected. Table 1

again shows a strong preference for the ball that is on the

ground.

D. Size

This experiment uses a larger soccer ball as a decoy, as

shown in Figure 5. This experiment works similarly to the

previous one in that the ball distance estimates are thrown

off, in addition to worsening “orangeness” measurements due

to the blackened areas of the ball. As we see in Table 1,

the left ball is strongly preferred as expected, however the

soccer ball’s fitness value is still high enough that it could be

detected as the object of interest in the absence of a better

candidate. By allowing for candidate ranking, we’re able to

ensure a negligible chance of picking the soccer ball over

the actual ball.

E. Competition Overview

After placing first at RoboCup 2012 in the SPL, UT

Austin Villa finished third at RoboCup 2013 in Eindhoven,

The Netherlands. 22 teams entered the 2012 competition,

where the tournament consisted of two round robin rounds,

followed by an elimination tournament with the top 8 teams.

The first round consisted of a round robin with seven groups

of three teams each, with the top teams from each group

advancing. In the second round, there were four groups of



Fig. 5: Setup for the size experiment.

Experiment µ, σ (Left) µ, σ (Right) PG PS

Baseline .92, .04 .89, .02 .7291 0.68

Velocity .88, .12 .15, .20 .9992 0.00

Height .90, .02 .78, .04 .9965 0.87

Size .89, .04 .39, .01 > .9999 1.00

TABLE 1: Statistics for computed fitness values for the given
experiments. Each experiment uses a sample of 500 frames. PG

represents the probability that the new Gaussian method will select
the object of interest (i.e. the left ball). This calculation assumes all
fitness values are normally distributed. PS represents the probability
of the same event using the original sequential checking method in
the same experimental setup.

four teams each, with the top two teams from each group

advancing. From the quarterfinals on, the winner of each

game advanced to the next round.

All of UT Austin Villa’s scores are shown in Table 2

and discussed shortly below. We document the competition

results in this paper as an informal evaluation of the team as

a whole.

At RoboCup 2013, UT Austin Villa began by winning

the first round robin after defeating Berlin United 4:0 and

Cerberus 5:0. In these games we tested and tuned various

strategies. UT Austin Villa faltered in the first game in the

second round robin, losing 2:4 to SPQR. As we discussed

in Section V, we particularly struggled in this game because

both teams played the entire game without inner-team com-

munication due to issues with the field’s wireless router. UT

Austin Villa still emerged second in this second round robin

pool though, after beating rUNSWift 2:1 and TJArk 6:0.

UT Austin Villa faced Northern Bites in the quarter-finals,

capturing a 7:0 win. UT Austin Villa then lost to B-Human

0:8 in the semi-finals before beating rUNSWift 4:0 in the

3rd place game.

Round Opponent Score

Round Robin 1 Berlin United 4-0
Round Robin 1 Cerberus 5-0

Round Robin 2 SPQR 2-4
Round Robin 2 rUNSWift 2-1
Round Robin 2 TJArk 6-0

Quarterfinal Northern Bites 7-0

Semifinal B-Human 0-8

3rd Place rUNSWift 4-0

TABLE 2: RoboCup 2013 Results

VII. CONCLUSION

This paper introduces our usage of Gaussian fitness scores

to evaluate possible detected objects. For each detected ob-

ject, we simultaneously evaluate a variety of object measure-

ments to determine if the detected instance is a true positive.

Using this method, instead of a series of binary cutoffs for

sanity checks, allows us to essentially construct a hyperplane

for binary classification. We found that using this method

was similar in effectiveness to hand-tuned sequential sanity

checks, but provided the additional benefit of simultaneous

measurement evaluation. In cases where a detected object lies

near a threshold for a particular sanity check, using Gaussian

fitness scores allows us to still recover true positives based

on the other measurements considered. Hence, using fitness

scores makes it less likely that one bad measurement will

falsely eliminate true positives.

We also introduce other improvements that were made in

our code base for RoboCup 2013, including our usage of a

virtual base for forward kinematics calculations, our ability

to flexibly transition player roles given dynamic numbers of

teammates, and our ability to quickly integrate new kicks

of varying speeds into our strategy. Combining all of our

improvements helped us play cohesively and intelligently at

RoboCup 2013, allowing us to finish third in the SPL.

REFERENCES

[1] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa, “RoboCup:
The robot world cup initiative,” in Proceedings of The First Interna-

tional Conference on Autonomous Agents. ACM Press, 1997.
[2] S. Barrett, K. Genter, T. Hester, P. Khandelwal, M. Quinlan, P. Stone,

and M. Sridharan, “Austin Villa 2011: Sharing is caring: Better
awareness through information sharing,” The University of Texas at
Austin, Department of Computer Sciences, AI Laboratory, Tech. Rep.
UT-AI-TR-12-01, January 2012.

[3] S. Barrett, K. Genter, Y. He, T. Hester, P. Khandelwal, J. Menashe,
and P. Stone, “UT Austin Villa 2012: Standard Platform League
world champions,” in RoboCup 2012: Robot Soccer World Cup XVI,
X. Chen, P. Stone, L. E. Sucar, and T. V. der Zant, Eds. Springer
Verlag, 2012.

[4] T. Röfer, T. Laue, J. Müller, A. Fabisch, F. Feldpausch, K. Gill-
mann, C. Graf, T. J. de Haas, A. Härtl, A. Humann, D. Honsel,
P. Kastner, T. Kastner, C. Könemann, B. Markowsky, O. J. L. Rie-
mann, and F. Wenk, “B-Human team report and code release,” 2011,
http://www.b-human.de/downloads/bhuman11 coderelease.pdf.

[5] amiel Verschoor, A. Wiggers, D. ten Velthuis, A. Keune, M. Cabot,
S. Nugteren, E. van Egmond, H. van der Molen, R. Iepsma, M. van
Bellen, M. de Groot, E. Fodor, R. Rozeboom, and A. Visser, “Dutch
nao team - technical report,” 2011.

[6] S. Harris, P. Anderson, B. Teh, Y. Hunter, R. Liu, B. Hengst,
R. Roy, S. Li, and C. Chatfield, “Robocup standard platform league
- runswift 2012 innovations,” in Australasian Conference on Robotics

and Automation, 2012.
[7] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,

R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, 2009.

[8] P. MacAlpine, F. Barrera, and P. Stone, “Positioning to win: A dynamic
role assignment and formation positioning system,” in RoboCup-

2012: Robot Soccer World Cup XVI, ser. Lecture Notes in Artificial
Intelligence, X. Chen, P. Stone, L. E. Sucar, and T. V. der Zant, Eds.
Berlin: Springer Verlag, 2013.

[9] O. Neamtu, W. Dawson, E. Googins, B. Jacobel, L. Mamantov,
D. McAvoy, B. Mende, N. Merritt, E. Ratner, N. Terman, J. Zalinger,
J. Morrison, and E. Chown, “Northern Bites code release,” 2012,
https://github.com/northern-bites.

[10] S. Barrett, K. Genter, T. Hester, M. Quinlan, and P. Stone, “Controlled
kicking under uncertainty,” in The Fifth Workshop on Humanoid

Soccer Robots at Humanoids 2010, December 2010.

http://www.b-human.de/downloads/bhuman11_coderelease.pdf
https://github.com/northern-bites

	Introduction
	Related Work
	Object Detection
	Virtual Base
	Transitioning Player Roles

	Utilizing Gaussian Fitness Scores for Object Detection
	Measured Statistics
	Fitness Computation

	Virtual Base for Forward Kinematics Calculations
	Behavioral Improvements
	Transitioning Player Roles Based on the Number of Active Players
	Quickly Integrating Kicks of Varying Speeds

	Evaluation
	Baseline
	Velocity
	Height
	Size
	Competition Overview

	Conclusion
	References

