
Self-stable Omnidirectional Walking with
Compliant Joints
Marcell Missura and Sven Behnke

Institute for Computer Science VI, Autonomous Intelligent Systems,
University of Bonn, Germany
missura@ais.uni-bonn.de

Abstract—Bipedal walking is one of the most essential skills
in humanoid robot soccer. A stable and fast gait gives teams a
winning edge when their robots are the first at the ball, maintain
ball control with sure feet, and drive the ball decisively towards
the opponent goal. The most successful teams in the Humanoid
League are typically characterized by reliably walking robots.

In this contribution, we describe the omnidirectional gait of
team NimbRo, one of the most successful robot soccer teams
in the history of RoboCup. The walk algorithm is open-loop
and model-free. It is based on highly configurable, central-
pattern-generated rhythmic motion signals and combines well
with a compliant servo setting to achieve a relatively high level
of self-stability. We discuss the advantages of this approach in
comparison with methods of other successful teams and support
our argumentation with experimental results.

I. INTRODUCTION

The ability to walk on two legs is the most distinguishing
feature of humanoid robots. While legs are a desirable means
of locomotion in terms of versatility and energy efficiency,
the challenge of maintaining balance on rough terrain and in
the presence of strong disturbances remains a difficult task
for roboticists. In simplified, flat-floor environments, however,
numerous teams of the Humanoid League are able to produce
a relatively stable and dynamic walk for their bipedal robots
and to provide for exciting games of robot soccer.

Team NimbRo is one of the most successful teams in
the Humanoid League to date. Playing with self-constructed
prototypes, the team managed to win the KidSize competitions
in the years 2007 and 2008 and the TeenSize competitions
from 2009 until 2013. One of the strengths of team NimbRo
is a self-stable, omnidirectional gait that has been successfully
adapted to a number of prototypes of varying sizes. Surpris-
ingly, the gait is able to recover from disturbances, such as
light pushes and stepping on small objects on the floor, even
though it is completely open-loop.

It is certainly not our intention to claim that feedback is not
necessary. To recover from large disturbances such as pushes
and tripping, a quick and appropriate reaction is essential to
maintain the balance of the biped and to return to a stable
motion cycle. Recovery strategies include variation of step-
timing, foot-placement, zero-moment-point control and the use
of the upper body as a reaction mass, all of which require
state feedback. But we argue that knowing where to step in

the absence of disturbances is a trait of robustness. Using an
open-loop stable core algorithm as starting point is beneficial
for a number of reasons. Most importantly, it automatically
yields a reference trajectory that can be described as a limit
cycle of the system dynamics. Used as input for higher-level
balance regulators, the natural dynamics of the physical system
can be fully exploited and augmented with light-weight control
strategies that try to return to a reference trajectory that the
robot is comfortable with, rather than enforcing an unnatural
gait that only works when feedback loops are active. The
balance control loop can remain inactive and allow the robot
to walk without control effort as long as corrective actions are
not required. Furthermore, the open-loop motion trajectory can
be used as fall-back in situations where sensor input may be
too noisy, e.g., right after the support exchange, or in case of
complete failure of sensory systems. Most of the successful
walk algorithms use some sort of a reference trajectory [1],
[2], [3]. However, they are not necessarily self-stable.

In the following, after reviewing related work, we detail
our gait engine by describing the motion patterns that are
combined to parametric omnidirectional stepping motions. We

Fig. 1. NimbRo robot Copedo walking up to the ball.

behnke
Schreibmaschine
In Proceedings of 8th Workshop on Humanoid Soccer Robots13th IEEE-RAS International Conference on Humanoid Robots (Humanoids), Atlanta, GA, 2013.

provide an annotated set of configuration parameters as it is
used for one of our robots. Then we show experimental results
to demonstrate the open-loop stability that can be achieved
with this approach. Finally, we discuss certain advantages of
our approach in comparison to other popular algorithms.

II. RELATED WORK

Zero moment point (ZMP) tracking with preview control
[1] is the most popular scientific approach to bipedal walking
to date. ASIMO [4], HRP-4C [5], and HUBO [6] are among
the most prominent examples. A number of footsteps planned
ahead in time are used as the reference input to define
a desired ZMP trajectory. To generate a continuous center
of mass (CoM) trajectory that minimizes the ZMP tracking
error, optimization algorithms are generally used in a Model
Predictive Control [7] setting. The CoM trajectory can then
be used in combination with inverse kinematics or inverse
dynamics to compute joint motions. These systems can walk
reliably on flat ground and have the ability to cope with weak
disturbances. However, the requirements of these algorithms,
such as precise position tracking, accurate physical modeling,
and high computational power, render them unsuitable for
embedded systems combined with low-cost motors that are
typically used by RoboCup teams.

In recent work, Urata et al. have presented an impressive
foot-placement based controller on a real robot that is capable
of recovering from strong pushes [8]. To speed up execution
time, an LQ preview based algorithm is used to generate
ZMP trajectories of a restricted form that can automatically be
tracked by the CoM without the need for further optimization.
To follow a commanded walking direction and speed, a
minimum delay online modification of the ZMP trajectory was
proposed [2]. While this controller successfully addressed the
problems of push recovery and fast execution time, it still
relies strongly on precise execution and an accurate full-body
dynamics model for CoM trajectory tracking.

Englsberger et al. [3] presented a new approach to gait pat-
tern generation based on capture point dynamics and showed
how using the capture point as the reference input instead
of the ZMP reduces the system equations to first order and
eliminates the computationally expensive optimization of CoM
trajectories. This approach is potentially suitable for robots
competing on the soccer field. It has only been evaluated on
the DLR biped [9] so far, but hopefully first implementations
on other hardware will appear in the near future.

Focusing on the methods that are applied by leading teams
of the Humanoid League, it is notable that the preferred
algorithms are simple and light-weight in comparison to what
is used in high-scale research projects in academic laboratory
environments. The simplicity of an algorithm is an attractive
feature when it comes to implementation on a real robot.
It not only lowers the requirements on the expertise that is
needed to successfully program and configure such an integral
part of the robot operating software, but it is also highly
correlated with computational efficiency. In the competitive
and rapidly changing setting of RoboCup, the requirements on

a walk algorithm shift towards the ability to adapt to walking
surfaces, hardware modifications, and entirely new prototypes.
The methods used by the RoboCup teams exhibit the necessary
parameters to adapt the algorithms basically to any two-legged
hardware. Algorithms that can optimize parameters in an
automated manner, either online or during a training phase,
have been experimented with [10], [11], [12], but are too time-
consuming. Consequently, hand-tuning of parameters is often
the method of choice to make robots walk. The gait tuning
significantly influences robot performance during games.

Perhaps the most advanced closed-loop walk was presented
for the Nao standard platform by Graf and Röfer [13], who
proposed the online-adjustment of step parameters based on
the solution of a system of linear pendulum equations. This
is one of very few examples that takes the timing and the
placement of foot steps into account. While a relatively
weak open-loop core is present, the proposed feedback loop
significantly increases the walking ability of the Nao robot to
a level that has not been outperformed so far.

In the KidSize class, team DARwIn has been dominating
the competitions in the recent years after the construction
of the DARwIn-OP platform [14]. This capable hardware
comes with a fast and reliable walk that is described in [15]
along with an online learning algorithm that attempts to find
stabilization parameters to cope with external disturbances.
The core walking process has a strong similarity with ZMP
based preview control. However, instead of the expensive CoM
trajectory optimization that includes jerk minimization, the
CoM trajectory is generated efficiently using simple linear in-
verted pendulum model equations. Swing foot trajectories are
expressed as phase dependent trajectories in Cartesian space
and are converted to joint motion using inverse kinematics.

Another remarkable gait generation technique has been
proposed by the University of Tsinghua [16]. Inspired by the
capability of passive dynamic walkers to walk down a shallow
slope at the expense of minimal energy and no control effort
at all, this approach shortens the swing leg before support
exchange and creates a virtual downwards slope for the center
of mass. The artificial shortening is reversed during the support
phase and the dissipated energy is regained. Along with a
simple, model-free and tunable algorithm for the generation
of stepping motions, this approach comes with a mathematical
framework to calculate optimal virtual slopes for desired
walking velocities. This method has been successfully applied
for KidSize and AdultSize robots, as well as for a fast two-
dimensional walker for scientific research.

In the closest related work [17], the motion patterns that are
used by team NimbRo were first described. Since then, the
algorithm has evolved. The patterns have been simplified and
extended with new capabilities along with new configuration
parameters that make the algorithm more flexible. It has
been adopted to new hardware and servo compliance has
been experimented with. In the recent years, the authors
have investigated possibilities to augment the open-loop walk
algorithm with closed-loop stabilizing strategies that are based
on the already existing motion generator. The lateral balance

Leg Interface

Motion Pattern

Control Interface

(η ,θLeg ,θFoot)

(θHip ,θKnee ,θAnkle)

V̌

VConfig τ

Fig. 2. Hierarchical layers of the NimbRo gait generator. The Control
Interface receives a gait velocity target V̌ from a higher layer and translates it
to a bounded and smoothed gait velocity vector V . The Motion Pattern layer
generates phase τ dependent periodic motion signals on an abstract level that
is translated by the Leg Interface to joint targets.

controller described in [18] was successfully implemented on
a real robot and used in RoboCup games since 2011. An
omnidirectional capture step controller [19] is currently being
developed.

III. THE NIMBRO GAIT ENGINE

The NimbRo gait generator algorithm can be represented
with three logical layers, as illustrated in Figure 2. The highest
instance is a Control Interface that bounds and smoothes a
gait velocity target V̌ , the input into the gait engine from
a higher layer. It produces a continuous gait velocity vector
V = (Vx, Vy, Vφ) with components in sagittal, lateral and
rotational directions. The velocity vector is interpreted with
respect to a right hand coordinate frame with the convention
that the x-axis points in forward direction. The z-axis, the
axis of the rotational gait component, points upwards. The
Control Interface also maintains a motion phase τ and passes
it on to the Motion Pattern layer. The Motion Pattern layer
generates periodic motion signals that are modulated with
the gait velocity input to produce omnidirectional stepping
motions that result in the desired walking speed. The motion
signals operate on an abstract level constituted by intuitive leg
control parameters, such as the angle of the leg relative to
the trunk, and the extension of the leg. These parameters are
then translated to joint targets by the Leg Interface abstraction
layer. A set of configuration variables is an integral part of the
algorithm to allow easy hardware adaptation. The three layers
are best explained in a bottom up order in more detail.

A. Leg Interface

The presented gait generation algorithm is entirely based
on a low-level motion abstraction layer that we dubbed as the
Leg Interface

L(η,θLeg,θFoot) = (θHip, θKnee,θAnkle). (1)

The Leg Interface allows intuitive control of a leg with
three input parameters. The leg extension η defines the
distance between the foot and the trunk, the leg angle

η

θLeg

θFoot
Trunk

θLeg
Roll

θLeg
Pitch

θLeg
Yaw

x

y

foot

Fig. 3. The Leg Interface allows independent control of three abstract
parameters: the leg extension η, the leg angle θLeg , and the foot angle θFoot
(left). The leg can be bent independently in roll, pitch, and yaw directions
(right).

θLeg = (θRollLeg , θ
Pitch
Leg , θY awLeg) defines the angle of the leg with

respect to the trunk, and the foot angle θFoot = (θRollFoot, θ
Pitch
Foot)

defines the inclination of the foot with respect to the transver-
sal plane. The leg can be bent in roll, pitch, and yaw directions,
while the foot can be bent in roll and pitch directions. The
meaning of these parameters is illustrated in Figure 3. The
Leg Interface encapsulates the calculation of coordinated joint
angles and computes an output for the hip, knee, and ankle
joints according to the formulas

λ = arccos(1− η), (2)
θY awHip = θY awLeg , (3)

θRollHip = θ′
Roll
Leg , (4)

θPitchHip = θ′
Pitch
Leg − λ, (5)

θKnee = 2λ, (6)

θPitchAnkle = θPitchFoot − θ′
Pitch
Leg − λ, (7)

θRollAnkle = θRollFoot − θ′
Roll
Leg , (8)

with [
θ′
Pitch
Leg

θ′
Roll
Leg

]
= R(−θY awLeg)

[
θPitchLeg

θRollLeg

]
, (9)

where R is a two-dimensional rotation matrix.
An important feature of the Leg Interface is the indepen-

dence of the input parameters. In particular this means that
rotations in yaw direction are interpreted with respect to the
center of the foot instead of with respect to the hip, where
in the latter case a rotation would have an influence on the
sagittal and lateral position of the foot and thus interfere with
the effect of the θPitchHip and θRollHip parameters. This feature
is implemented by equation (9). The parameter independence
makes it easier to control foot configurations on a higher layer.

The leg extension parameter η ∈ [0, 1] is expected to be in
a bounded range, where a leg extension of 0 is interpreted as
a fully extended leg and the leg extension of 1 is interpreted
as a fully retracted leg. The reason why the parameter was
assigned this way is a convention that values of 0, no matter if
Leg Interface parameters or joint angles, result in a safe robot

pose where the legs are fully extended parallel to the trunk
and to each other, and the feet are orthogonal to the legs. The
leg and foot angle parameters can have arbitrary values as far
as the Leg Interface is concerned. Joint angle limitations are
enforced on a deeper level on a single joint basis.

The kinematic order of the joints is relevant for the com-
putation of the joint angle output. The formulas (3) to (8)
assume that the joint sequence starting from the hip is: hip
yaw, hip roll, hip pitch, knee pitch, foot pitch, and foot roll.
Additionally, the Leg Interface assumes that the thigh and the
shank are of equal lengths. In case of a different kinematic
configuration, the Leg Interface formulas need to be adjusted
accordingly.

B. Motion Pattern

The NimbRo gait is essentially a combination of rhythmic
activation signals that encode periodic leg-lifting and leg-
swinging motions. The output of the pattern generator is a set
of Leg Interface parameters that allow us to conveniently de-
sign leg angle and leg extension trajectories instead of having
to think about coordinated motions on the single joint level.
The motion pattern can be subdivided into isolated motion
primitives, which will be presented in the following. We denote
motion primitives with the letter P and configuration variables
with the letter C.

1) Halt Position: The halt position is a static, i.e., not phase
dependent offset from zero. It is a pose the robot is standing in
when the robot is not walking. All other motion primitives are
added to the halt position and thus it can be described as the
“center” of the walking motion. Typically, in the halt position
a robot has its knees slightly bent, the legs are spread apart
by a few degrees to provide a wide enough stance, and the
center of mass is adjusted to be roughly above the center of
the feet. The halt position PHalt is a collection of configuration
parameters

P ηHalt = C1,

PLegRollHalt = σ C2,

PLegPitchHalt = C3,

PFootRollHalt = C4,

PFootPitchHalt = C5,

where σ ∈ {−1, 1} denotes the leg sign (left or right).
2) Leg Lifting: The alternating shortening of a leg induces

a lateral oscillation of the body mass and frees one leg at a
time from its support duty. The leg extension is activated with
a sinusoidal function

PLegLift =

{
sin(τ) (C6 + C7 max(|Vx|, |Vy|)), τ ≤ 0

sin(τ) (C8 + C9 max(|Vx|, |Vy|)), else
,

(10)
that takes the motion phase τ ∈ [−π, π) as an argument. The
motion phase of the left leg is shifted by π with respect to
the right leg, so that the same motion pattern can be used for
both legs at the same time.

π/-π 0 π/-π 0 π/-π 0 π/-π
motion phase

leg extension leg pitch leg roll

Fig. 4. The main ingredients of the gait motion are rhythmical leg lifting
(top), leg swing motion (center), and a lateral hip swing (bottom). Only the
patterns for the right leg are shown. The solid vertical lines indicate the
expected times of support exchange. The dashed vertical lines indicate the
swing start and swing end timings.

The leg lifting motion is shown in Figure 4 on the top.
Notably, the leg lifting primitive makes a distinction between
a support phase (τ ≤ 0), when the foot is on the ground, and
a swing phase (τ > 0), when the foot is in the air and can
be swung. The configuration variables C6 and C7 describe a
constant push amplitude and a gait velocity dependent push
amplitude during the support phase. The step height ampli-
tudes during the swing phase are determined by C8 and C9,
respectively. Support exchange is expected to occur at motion
phase τ = 0 and τ = ±π. In the support phase, the support
leg pushes into the ground with a much smaller amplitude
than it lifts up into the air during the swing phase. The push
amplitude should be no greater than the leg extension in the
halt position C1, otherwise the leg would be overstretched. The
velocity dependent increase of the step amplitude is crucial to
avoid ground contact when a larger step size is used and allows
for calm steps with a low height when the robot is walking
slowly or on the spot.

3) Leg Swing: To induce a walking motion in any direction,
a leg swing pattern

γ =

cos(

τ−Cτ0
Cτ1−Cτ0

π), Cτ0 ≤ τ < Cτ1
2(τ−Cτ1)

2π−Cτ1+Cτ0
− 1, Cτ1 ≤ τ < π

2(τ+2π−Cτ1)
2π−Cτ1+Cτ0

− 1, −π ≤ τ < Cτ0

, (11)

PPitchLegSwing =

{
γVxC10, Vx ≥ 0

γVxC11, Vx < 0
, (12)

PRollLegSwing = −γVyC12 − σmax(|Vy|C13, |Vφ|C14), (13)

PY awLegSwing = γ Vφ C15 − σ|Vφ|C16 (14)

is used. As shown in Figure 4 in the center, the leg is
swung forward with a sinusoidal motion and pushed back
with a linear motion in the support phase. The motivation
why the support motion has been designed this way is that

if the legs were the spokes of a wheel that is traveling with
a constant speed, the angular velocity of the spokes would
also be constant. The free swing, however, is designed as a
sinusoid in order to swing the leg as smoothly as possible and
to minimize inertial effects on the rest of the body.

The leg swing motion is not perfectly embedded into the
motion phase. Swing phase configuration parameters Cτ0 and
Cτ1 are used to delay the start of the swing motion and to
rush the touch down of the leg before the support exchange
at motion phase τ = ±π. We found that these parameters are
a good way to eliminate shuffling and to implicitly create a
short double support phase, that we do not take into account
otherwise. Again, we delay the motion phase of the left leg
by π with respect to the right leg and use the same motion
pattern to drive both legs at the same time.

The equations to produce the leg swing motion differ in
the three directions. In sagittal direction (12), the legs are
encouraged to swing fully from front to back. Separate swing
amplitudes for walking forward and backward are configured
using the step size parameters C10f and C11. In lateral
direction (13), however, the legs would collide. Therefore, leg
roll angle offsets C13 and C14 are added proportionally to
the lateral and rotational gait velocities Vy and Vφ, causing
the legs to spread out when walking in lateral direction and
when the robot is turning. In rotational direction (14), a
velocity dependent yaw angle offset can be configured using
the parameter C16. An annotated list of all configuration
parameters is given in Table 1.

4) Lateral Hip Swing: The lateral hip swing sways the
pelvis left and right during walking and helps to transfer the
CoM from leg to leg at the right time. The hip swing is
designed as two opposing sinusoid motions, one for the hip
swing to the left and one for the hip swing to the right. These
sinusoids are also not perfectly embedded into the motion
phase. Two explicit motion phases τl and τr

τl =

τ − Cτ1 + 2π, τ < Cτ0
τ − Cτ1 , τ > Cτ1
0, else

, (15)

τr =

τ − Cτ1 + 3π, τ + π < Cτ0
τ − Cτ1 + π, τ + π > Cτ1
0, else

, (16)

are derived from the motion phase τ for the left swing (τl) and
the right swing (τr) using the swing start Cτ0 and swing stop
Cτ1 timing parameters to determine the start and end points of
the sinus waves in the motion phase. The hip swing to the left
starts when the left foot touches the ground and ends when
the left foot is lifted off the ground. The hip swing to the
right works in a symmetrical manner. The two sinusoids are
summed up to create the final hip swing motion primitive

PHipSwing = C17(sin(τl
π

δ
)− sin(τr

π

δ
)), (17)

using δ = Cτ0 − Cτ1 + 2π. The two swing patterns overlap
in the double support phase and their sum creates a smooth

transition between the left and the right swing phases, as
illustrated in Figure 4. In the case of the hip swing motion
primitive, the motion phase is not delayed for the left leg.
Both legs execute the same pattern at the same time.

5) Leaning: The leaning motion primitive

PPitchLean =

{
VxC18, Vx ≥ 0

VxC19, Vx < 0
, (18)

PRollLean = −Vφ|Vx|C20, (19)

leans the robot slightly in the walking direction by adding an
offset to the roll and pitch angles of the leg proportionally to
the walking velocity. It does not depend on the motion phase.
We differentiate between forward and backward walking and
use separate parameters to calibrate the lean offset. The lean
in lateral (roll) direction is determined by the combination
of the sagittal and the rotational walking velocity. Practically
speaking, the robot “leans into curves”. In earlier work we
performed an experiment with the NimbRo-OP [20] that
demonstrates the benefit of the leaning primitive for the
balance of the robot.

The final motion pattern is a sum of all motion primitives

η = P ηHalt + PLegLift

θRollLeg = PLegRollHalt + PHipSwing + PRollLegSwing + PRollLean

θPitchLeg = PLegPitchHalt + PPitchLegSwing + PPitchLean

θY awLeg = PY awLegSwing

θRollFoot = PFootRollHalt

θPitchFoot = PFootPitchHalt .

For the sake of brevity, we have neglected the description of
the arm motion. However, the implementation of the arm mo-
tion within this pattern generator is straight forward. Similar to
the Leg Interface, an Arm Interface would provide an abstract
actuator space in which the same configurable swing motion
primitive can be used, as it was already used to swing the legs.

C. Control Interface

The highest instance of the gait generator is a Control
Interface layer that accepts the input of a desired walk-
ing velocity expressed in SI units. Using a simple linear
mapping, we translate the input to a gait velocity vector
V̌ = (V̌x, V̌y, V̌φ) ∈ [−1, 1]3, where a value of 1 represents
the highest achievable velocity. To implement omnidirectional
walking, the three directional components can be arbitrarily
combined as long as the velocity vector is contained within a
convex region that is defined by a p-norm

V̂ =

{
V̌

‖V̌ ‖C21

, ‖V̌ ‖C21
> 1

V̌ , else
. (20)

The configurable shape of the applied norm enforces a restric-
tion on the allowed velocity component combination and also
bounds the gait velocity to remain inside the [−1, 1]3 space,
which may not yet be the case after the linear mapping of the
SI input.

Essentially, the gait velocity vector determines the leg swing
amplitudes in roll, pitch and yaw directions. Through the
modulation of the motion pattern amplitudes in (10), (12),
(13), (14), (18), and (19), the gait velocity has a direct effect
on the motor targets that are sent to the robot. Therefore it
is crucial that the Control Interface presents a gait velocity to
the Motion Pattern layer that remains continuous at all times,
otherwise the continuity of joint motions would be disrupted.
The Control Interface maintains an internal state V of the gait
velocity that is moved towards the bounded gait input V̂ in
small increments within configurable bounds

Vx = Vx + max(−C22,min(V̂x − Vx, C22)), (21)
Vy = Vy + max(−C23,min(V̂y − Vy, C23)), (22)

Vφ = Vφ + max(−C24,min(V̂φ − Vφ, C24)). (23)

Through the allocation of the gait velocity bounding and
smoothing in the Control Interface, higher control layers are
relieved from the responsibility of protecting the robot from
discontinuous motion signals.

Aside from the gait velocity, the motion phase τ is also
maintained inside the Control Interface

τ = τ + C25 + |Vx|C26 + |Vy|C27. (24)

The parameters C26 and C27 allow velocity dependent step
frequency modulation. Typically, the step frequency is slightly
increased with sagittal velocity and slightly decreased with

TABLE I
AN ANNOTATED SET OF CONFIGURATION PARAMETERS THAT ARE USED
BY THE GAIT GENERATION ALGORITHM. THE PROVIDED VALUES ARE A

SET OF PARAMETERS THAT WE USE FOR OUR BIPEDAL ROBOT DYNAPED.

Variable Value Denotation
C1 0.02 Halt Position Leg Extension
C2 0.1 Halt Position Leg Roll Angle
C3 0.02 Halt Position Leg Pitch Angle
C4 0.03 Halt Position Foot Roll Angle
C5 0 Halt Position Foot Pitch Angle
C6 0.02 Constant Ground Push
C7 0 Proportional Ground Push
C8 0.3 Constant Step Height
C9 0.12 Proportional Step Height
Cτ0 0 Swing Start Timing
Cτ1 2.3876 Swing Stop Timing
C10 0.17 Sagittal Swing Amplitude Fwd
C11 0.12 Sagittal Swing Amplitude Bwd
C12 0.1 Lateral Swing Amplitude
C13 0.05 Lateral Swing Amplitude Offset
C14 0.015 Turning Lateral Swing Amplitude Offset
C15 0.2 Rotational Swing Amplitude
C16 0.05 Rotational Swing Amplitude Offset
C17 0.035 Lateral Hip Swing Amplitude
C18 0 Forward Lean
C19 0 Backward Lean
C20 -0.07 Forward and Turning Lean
C21 3.5 Gait Velocity Limiting Norm p
C22 0.0085 Sagittal Acceleration
C23 0.01 Lateral Acceleration
C24 0.009 Rotational Acceleration
C25 0.09 Constant Step Frequency
C26 0.008 Sagittal Proportional Step Frequency
C27 0 Lateral Proportional Step Frequency

lateral velocity. Whenever the motion phase exceeds the upper
bound of π, it needs to be wrapped

τ =

{
τ − 2π, τ > π

τ, else
. (25)

This cannot be done smoothly. Thus, all motion phase depen-
dent motion primitives have to be designed carefully in order
to produce a continuous output, even when the motion phase
is reset.

IV. EXPERIMENTAL RESULTS

The accompanying video [21] shows a number of different
humanoid robots that the walk algorithm described in this
work has been implemented on. All of these robots could
walk on a flat floor and demonstrated outstanding performance
in RoboCup soccer games. In push experiments that were
performed in the video, the biped was able to absorb impacts
that were strong enough to create a visible disturbance during
a completely open-loop walk. The robot was also able to
step on a board with a thickness of 2 cm. Furthermore, the
video shows some of the effects of compliant control. The
robot automatically yields to pressure and dampens undesired
swinging. While it is difficult to isolate the effect on stability,
the ability to absorb shocks and to dampen swinging can be
reasonably assumed to have a positive influence. Other effects
we observed since we introduced compliant control are longer
operation times before overheating and a reduction of damage
to transmission gears.

Elastic actuation is achieved by using the compliance slope
feature offered by the Dynamixel servos. The compliance slope
has an influence on the gain of the PD-controllers that drives
the servos to commanded positions. The higher the slope,
the higher the gain when the current position deviates from
the commanded position. We use a compliance slope of 32
according to the Dynamixel communication protocol for all
motors in the leg. We have only been able to achieve this
compliance level in combination with our prototypes that were

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0 1 2 3 4 5 6

jo
in

t a
ng

le
 [r

ad
]

time [s]

hip tx hip rx knee tx knee rx

Fig. 5. Time series of the commanded (tx) positions and measured (rx)
positions of the right hip pitch and knee joints during forward walking.

built using a parallel kinematic mechanical structure. Other
robots had to be driven with a harder motor configuration.
While the high motor compliance results in smooth and stable
motions, it is important to be aware of the fact that the position
tracking error of the motors increases. Figure 5 shows the time
series of commanded and measured motor positions for the
hip pitch and knee servos in a situation when the robot was
walking forward with full velocity. The position tracking error
as well as the actuation latency are evident. This is not an issue
for the gait generator that was presented in this paper, because
it is easy to reconfigure the commanded motion signals in a
way that the desired output of the motors is achieved. However,
in a recent publication [22] we have addressed this issue
and proposed a possible solution to compliant actuation with
precise position tracking.

V. CONCLUSION AND DISCUSSION

We have presented an algorithm that generates a com-
pliant, open-loop walking motion for bipedal robots. The
presented method has a number of advantages compared to
other commonly accepted approaches. Our method is model
free. Masses, inertia, and sizes of body parts do not need to be
modeled. It combines well with elastic position control and it
does not have an issue with position tracking errors. It moves
the robot using an abstract forward kinematic interface and can
produce a natural looking and energy-efficient robotic walk
with stretched knees. Inverse kinematics and linear inverted
pendulum based motion control algorithms typically restrict
the motion of the center of mass to a plane and thus produce
unnatural looking walking motions with bent knees that expose
the leg motors to unnecessary strain. Using inverse kinematics
to follow trajectories defined in Cartesian space also has the
disadvantage that swing leg motions have to be designed in a
way that they remain inside the kinematically feasible area of
the legs. When using forward kinematics to express motions,
this is always guaranteed.

We have demonstrated in an experiment that the walk is
self-stable. It is able to absorb small disturbances without a
feedback loop and to return to a stable cycle. This feature
makes this central pattern generated motion controller an
attractive building block in a hierarchical push recovery control
approaches [18], [19].

In future work, we will continue to investigate feedback
control strategies that are using this motion generator as a
parameterized step controller to achieve a controllable, push
robust gait.

VI. ACKNOWLEDGEMENT

This work has been supported partially by grant
BE 2556/6-1 of German Research Foundation (DFG).

REFERENCES

[1] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kiyoshi Fujiwara, Ken-
suke Harada, and Kazuhito Yokoi. Biped walking pattern generation
by using preview control of zero-moment point. In IEEE Int. Conf. on
Robotics and Automation (ICRA), pages 1620–1626, 2003.

[2] Junichi Urata, Koichi Nishiwaki, Yuto Nakanishi, Kei Okada, Satoshi
Kagami, and Masayuki Inaba. Online walking pattern generation for
push recovery and minimum delay to commanded change of direction
and speed. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), pages 3411–3416, 2012.

[3] Johannes Englsberger, Christian Ott, Máximo A. Roa, Alin Albu-
Schäffer, and Gerhard Hirzinger. Bipedal walking control based on
capture point dynamics. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), pages 4420–4427, 2011.

[4] Kazuo Hirai, Masato Hirose, Yuji Haikawa, and Toru Takenaka. The
development of honda humanoid robot. In IEEE Int. Conf. on Robotics
and Automation (ICRA), 1998.

[5] Shuuji Kajita, Mitsuharu Morisawa, Kanako Miura, Shinichiro Nakaoka,
Kensuke Harada, Kenji Kaneko, Fumio Kanehiro, and Kazuhito Yokoi.
Biped walking stabilization based on linear inverted pendulum tracking.
In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pages
4489–4496, 2010.

[6] Ill-Woo Park, Jung-Yup Kim, Jungho Lee, and Jun-Ho Oh. Mechanical
design of humanoid robot platform khr-3 (kaist humanoid robot 3:
Hubo). In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
pages 321–326, 2005.

[7] Pierre-Brice Wieber. Trajectory free linear model predictive control for
stable walking in the presence of strong perturbations. In IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids), pages 137–142, 2006.

[8] Junichi Urata, Koichi Nishiwaki, Yuto Nakanishi, Kei Okada, Satoshi
Kagami, and Masayuki Inaba. Online decision of foot placement using
singular lq preview regulation. In IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), pages 13–18, 2011.

[9] Christian Ott, Christoph Baumgrtner, Johannes Mayr, Matthias Fuchs,
Robert Burger, Dongheui Lee, Oliver Eiberger, Alin Albu-Schffer,
Markus Grebenstein, and Gerd Hirzinger. Development of a biped robot
with torque controlled joints. In IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids), pages 167–173. IEEE, 2010.

[10] Felix Faber and Sven Behnke. Stochastic optimization of bipedal
walking using gyro feedback and phase resetting. In Humanoid Robots,
7th IEEE-RAS International Conference on, pages 203–209, 2007.

[11] Cord Niehaus, Thomas Röfer, and Tim Laue. Gait optimization on a
humanoid robot using particle swarm optimization. In 2nd Workshop on
Humanoid Soccer Robots at Humanoids Conference, Pittsburgh, 2007.

[12] Andrea Cherubini, Francesca Giannone, Luca Iocchi, M Lombardo, and
Giuseppe Oriolo. Policy gradient learning for a humanoid soccer robot.
Robotics and Autonomous Systems, 57(8):808–818, 2009.

[13] Colin Graf, Alexander Härtl, Thomas Röfer, and Tim Laue. A robust
closed-loop gait for the standard platform league humanoid. In 4th
Workshop on Humanoid Soccer Robots at Humanoids Conference, 2009.

[14] Inyong Ha, Yusuke Tamura, and Hajime Asama. Development of open
platform humanoid robot darwin-op. Advanced Robotics, 27(3):223–
232, 2013.

[15] Seung-Joon Yi, Byoung-Tak Zhang, Dennis Hong, and Daniel D.
Lee. Online learning of a full body push recovery controller for
omnidirectional walking. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), pages 1–6, 2011.

[16] Hao Dong, Mingguo Zhao, and Naiyao Zhang. High-speed and energy-
efficient biped locomotion based on virtual slope walking. Autonomous
Robots, 30(2):199–216, 2011.

[17] Sven Behnke. Online trajectory generation for omnidirectional biped
walking. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages
1597–1603, 2006.

[18] Marcell Missura and Sven Behnke. Lateral capture steps for bipedal
walking. In IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids),
2011.

[19] Marcell Missura and Sven Behnke. Omnidirectional capture steps
for bipedal walking. In IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids), 2013.

[20] Max Schwarz, Michael Schreiber, Sebatian Schueller, Marcell Missura,
and Sven Behnke. Nimbro-op humanoid teensize open platform. In
Workshop on Humanoid Soccer Robots of the IEEE-RAS Int. Conf. on
Humanoid Robots (Humanoids), 20012.

[21] Marcell Missura and Sven Behnke. Demonstration of an open-loop,
central-pattern-generated walk. http://www.ais.uni-bonn.de/movies/
NimbRoGait.wmv.

[22] Max Schwarz and Sven Behnke. Compliant robot behavior using servo
actuator models identified by iterative learning control. In 17th RoboCup
International Symposium, 2013.

