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Abstract—We focus on two critical features in big size robot
soccer. First, efficient training is one of the important issues for
RoboCup teams to adapt their robots on site. Real robot’s training
takes time and may damage the hardware while simulated one
may miss the important factors to be improved. Second, to
predict behavior of opponent robots is necessary for big size
robots because they cannot move quickly so far. To overcome the
issues we developed a versatile simulator and a smart strategy
to improve accuracy of shoot and block. The former consists of
multiple channels of inputs such as a real live video image stream,
a real but already recorded one, and virtual one. The two kinds
of outputs are real robot motor commands and virtual ones. We
can have any combination of input/output to reduce the amount
of training (less damage to real robot hardware) while improving
the robot behavior. The latter, a strategy, consists of opponent
recognition and adaptive action planning. The opponent (goalie
or shooter) is detected by simple background subtraction, and
its behavior is predicted based on the velocity in the image. This
enables a shooter to find the space to shoot a ball, and for a
goalie to block the goal from the opponent player’s shooting. We
successfully applied the system to the RoboCup 2013 humanoid
league adult size, and got the championship as well as the best
humanoid award (”Louis Vuitton Cup”).

I. INTRODUCTION

Team JoiTech participated in the soccer humanoid adult
size league at RoboCup 2013. The team comprised students
from Osaka University and Osaka Institute of Technology.
We have participated in the RoboCup Japan Open and the
RoboCup world competition each year since 2010. Our team
was originally derived from RoboCup team JEAP, who par-
ticipated in the humanoid league kid size competitions since
2006. Our team name, JoiTech, is an acronym for “JEAP
and Osaka Institute of Technology,” but it also means “joint
team with Osaka Inst. of Technology” and “enjoy technology.”
This was the third humanoid adult size world RoboCup soccer
competition. The adult size league has two critical differences
compared to the other leagues (kid size and teen size).

First, large and heavy robots cannot run for long periods
because of the high load on their motors. It is also expensive
to prepare spare robots. Thus, it is preferable to minimize the
need for testing of large robots, which limits the development
of code for these robots.

Second, adult size robots are required to strike the ball
and block the goal. The rules of the adult size game differ
from those of the other size leagues, because it is based
on penalty kicks from human soccer. The adult size game
involves an offensive player and a defending goalkeeper, and
each side is limited to five penalty attempts. Shooting or

TABLE I. TICHNO-RN HARDWARE SPECIFICATIONS

Tichno-RN
Height (mm) 1500
Weight (kg) 25

DOF 22
Actuators VS-SV410, VS-SV1150, VS-SV3310
Camera Type iBUFFALO BSW20KM11BK
Controller Main Controller Sub Controller

CPU Panasonic Let’s Note VS-RC003HV
Intel Corei5 2.6GHz ARM7TDMI LPC2148

ROM 223 GB (SSD) 512 KB
RAM 8 GB 40 MB

OS Windows 7 None

blocking failures are not options in the championship. In recent
years, the behavior of goalkeepers has become more important
because many robots in the adult size league can score goals
successfully. However, current adult size robots cannot move
rapidly or drop down to block the goal. Thus, we developed a
practical strategy for the goalkeeper given the constraints on
the robot’s motions, which most teams had not considered.

We developed systems to solve the two critical problems
encountered in the adult size league. This paper is organized as
follows. We provide the hardware specifications in section II.
In section III, we present an overview of the software and an
object recognition system based on other software systems. We
also describe the development environment used to solve the
first problem, as well as the strategies used by the striker and
the goalkeeper to address the second problem. The final section
presents the results achieved by our team in the competitions
and we summarize how our strategies performed during the
games.

II. ROBOT HARDWARE

A. Hardware

In this section, we explain the hardware specifications for
Tichno-RN, the mechanical structure of which was developed
by Vstone Co., Ltd [1]. A front view and schematic overview
are shown in Fig. 1. The detailed specifications are given in
Table I.

Tichno-RN has 22 degrees of freedom (DoFs) as shown
in Fig. 1(a). The legs and arms each have six DoFs and four
DoFs, respectively. The structure and powerful electric motors
generate a strong torque of about 32N ·m, which allows our
robot to squat down and turn rapidly.

Each actuator has a micro-controller with sensors that
detect the angular position of joints, temperature, and speed,
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(a) DOF configuration (b) The front view

(c) The camera

Fig. 1. Tichno-RN: (a) schematic overview of the actuators and the
configuration of the body, (b) front view of the whole body, (c) camera
mounted on the robot.

and which transmits the sensor information to a sub-controller.
A camera is used as the eye of the robot and it has a wide
angle view of 120 degrees. The camera position is adjusted
to keep its own toes and the top of the goalposts within the
visual field. Tichno-RN can squat down, stand up, hold a ball,
and throw it, which are required to make a throw-in. Only the
JoiTech robot succeeded in performing a throw-in during the
technical challenge.

B. Control System

Tichno-RN has two controllers: a main controller and a
sub-controller. The main controller has an advanced proces-
sor that allows object recognition and action decisions. This
system uses a commercially available notebook with sufficient
capacity for image processing. The main controller allowed
us to develop a system without any special micro-controller
programming skills. The sub-controller perceives information
obtained from gyro and speed sensors in the actuators and
it controls all of the actuators. The sub-controller stores the
motor routines such as shooting and throw-in. The sequence
of motor commands that comprise the motor routines are
sent to the motors after the sub-controller receives an order
from the main controller, and it subsequently receives sensor
information related to the speed and angle in real time.

III. SOFTWARE

Fig. 3 provides an overview of the software used by the
main controller. This software was implemented using C++
and we utilized OpenCV [2] as the image processing library.
The operating system was Ubuntu 12.04 LTS 64bit.

The main program comprises three units. A strategy unit
decides the robot’s behavior based on sensory information. The
motion module converts a behavior or motor routine into motor

Fig. 2. Control system architecture: the main controller has an advanced
processor for object recognition and action decisions. The sub-controller
receives accelerator, gyro, and motor sensor information. The sub-controller
sends a sequence of motor commands for one of the motor routines to the
motors after it receives an order from the main controller.

Fig. 3. System Architecture: The video stream and recorded video stream
are produced from data captured by the real robot camera. The simulated
video stream is produced by a simulator. The output selector selects a real
or simulated robot. One output and one input can be selected. For example,
it is possible to select recorded real world video data as the input and the
simulated robot as the output.

commands and initiates the motion. We define motions as
motor routines such as walking or kicking. The vision module
is an image processing unit. We also produced a simulation to
facilitate efficient debugging.

The processing flow was as follows.

1) Recognize environmental information using the vi-
sion module.

2) Decide an action using the strategy.
3) Execute the motions using the motion module.

In the following subsections, we describe the image pro-
cessing procedure, the strategies used by the attacker and the
goalkeeper, a method for generating motions, and the test
environment.

A. Method for Generating Motions

We use RobovieMaker2 to create the motions, which is
a program developed by Vstone Co. Ltd. Fig. 4 shows the
development environment of RobovieMaker2. Each value on



Fig. 4. RobovieMaker2: left, each slider corresponds to the joint angles of
motors; right, flowchart showing an example of a motion.

the slider bars corresponds to the joint angles of the motors.
The robot’s poses or postures are generated using these slider
bars. To create motions, we link a position to the next position
and specify the time between them. Fig. 4 shows a motion
flowchart on the right. RobovieMaker2 simplifies the process
of producing motions. We produced 11 motions, including
kicking and throw-ins. The walking motion we employed was
developed by Vstone Co. Ltd.

B. Image processing

The vision module is used for image processing and it
detects the positions of key objects such as the ball and the
goal. The vision module recognizes the field, the ball, lines,
and obstacles.

An example result of the visual processing is shown in Fig.
5. The vision module extracts the biggest green region and
considers it, filtered from noise, as the field area. The vision
module assumes that objects such as the ball, goal, lines, and
obstacles are in contact with the field area. The ball, lines, and
obstacles are recognized based on the colors and shapes of the
objects.

Goal recognition is important for shooting. Due to height
of the robot The robot’s camera captures a large area, includ-
ing space outside the field area, which can lead to a false
detection of objects. Therefore, we developed a strict goal
recognition strategy. We specified the goal configuration as two
vertical lines and a horizontal on the field area. However, this
strict recognition method sometimes missed the goal because
of image blurring when the robot was moving. To address
this problem, we separated goal recognition into two phases:
detection and tracking. First, the robot detects the goal lines
using the Hough transform [3] and recognizes the goal as lines
that meet the field. This recognition method prevents the false
detection of objects outside the field. Second, the robot tracks
the goal using a particle filter [4] [5] based only on color until
the goal is outside the camera image. This method allowed
the robot to detect and track the goal in a stable manner, even
while it was moving.

Opponent

Field (deep green)

Ball

Goal

Line

Fig. 5. Example of the results obtained with visual processing.

C. Test Environment

Any motions made by an adult size robot put a load on
its motors and it is difficult to prepare spare robots or motors.
Thus, it is desirable to minimize the number of trials when
testing the software using a real robot.

To address this problem, we developed two test environ-
ments: a simulator and video recording/replay.

Combinations of these environments provided flexible and
convenient systems for debugging the software. Next, we
describe the simulator, the video recording and replay system,
and combinations of these tools, which we refer to as the
”versatile robot simulator.”

1) Simulation: We created a simulation environment for
software testing that does not require a real robot. Fig. 6
shows a snapshot captured by the simulator. This simulator
was implemented using Open Dynamics Engine [6] and it
reproduced the minimum set of game elements, i.e., the field,
robots, lines, black obstacles, and a ball. We obtained the
parameters for the simulated robot (e.g., moving speed, turning
speed, and kicking strength) based on the movements of our
real robot. We added noise to the parameters to test the
robustness of the programs.

Our simulator aimed to test the software used to generate
the game strategies (and visual recognition), rather than im-
proving the robot motions. Consequently, our environment did
not simulate walking or other motions in detail.



Fig. 6. Snapshot of the simulation. The black pole in front of the goal
represents the opponent goalkeeper.

2) Vision Recording and Replay: Our simulator was a con-
venient tool for software testing, but it lacked visual realism.
Therefore, we created a visual testing system to record the
camera data captured by a real robot during testing and we
streamed the recorded data to the vision module. This system
allowed us to test the vision software repeatedly using the
real robot’s camera data without operating the real robot. This
system was more advantageous than real robot tests when
debugging some errors in specific situations (e.g., the robot
lost the goal in a particular position) because the tests utilized
exactly the same data and were repeatable.

This system was used during the development phase and in
the competition. For example, we analyzed the color informa-
tion in the field over time and considered the recorded video
data. The real competition movies were useful for analyzing
the strategies used by opponents and making adjustments
before the next game.

3) Versatile Robot Simulator: We could select the camera
on the real robot, the simulated camera, or recorded video data
as the input for the vision module, and the real robot or the
simulated robot as the output for the motion module. Each
combination (3× 2) produced a different test environment for
a specific purpose. The combinations are described below.

• Simulated camera + simulated robot:
The strategies used by the robot could be tested in
a completely simulated world. The real robot was
never required. However, it was necessary to make
the test similar to a real environment, because the
visual information in the simulator was very different
from the real visual information. This test environment
could be run in parallel with the software.

• Recorded video data + simulated robot:
This combination allowed testing using previous real
visual environments without damaging the robot. This
was useful for fixing reproducible bugs because the

recorded video could be used repeatedly. This test
environment could be run in parallel with the software.

• Real camera + simulated robot:
This was useful for detecting bugs because we could
change the camera image by moving the video cam-
era while watching the behavior of the robot in the
simulator.

• Simulated camera + real robot:
This is able to test in visual situation with real robot
even impossible situation in real world. These envi-
ronments were not valid for testing for competition.

• Recorded video data + real robot:
It tests almost same parts of system as Recorded video
data + simulated robot. These environments were not
valid for testing.

• Real camera + real robot:
This was the most basic test environment, which
allowed testing in exactly the same environment as
during the competition. We performed some tests in
this environment, but they could damage the robot.

D. Strategies Used by the Attacker and the Goalkeeper

There are only limited opportunities for shooting in the
adult size league. The likelihood of successful shooting and
blocking are increased if the robot can dribble a ball and shoot
it at the goal. Thus, we developed fundamental strategies for
our robot, as follows.

1) Opponent Detection and Deciding the Shooting Direc-
tion: Recently, robots have been required to shoot accurately
at the goal while avoiding the goalkeeper. In the 2013 compe-
tition, the robots also had to avoid a black obstacle placed in
front of the goal. Next, we describe the strategy used by our
robot, which allowed the robot to shoot at the goal accurately
while avoiding the black obstacle and the goalkeeper.

1) Detect the location of the black obstacle using object
recognition and the opponent robot by background
subtraction (Fig. 7). Then the robot detects the posi-
tions of the goalposts by goal recognition.

2) Calculate the widest distances between the goalposts,
the opponent robot, and the black obstacle.

3) Turn towards the center of the widest space and
kicking the ball.

Using this method, the robot could kick the ball in the space
with the highest likelihood of scoring a goal. Background
subtraction allowed our robot to avoid the opponent robot,
regardless of its color.

2) Goalkeeping strategy: Previously, the strategy used by
most adult size robot goalkeepers was standing upright in
the goal area without moving. However, the blocking success
has become important because of the increased number of
successful shots in the championship. Thus, we developed the
following strategy (Fig. 8).
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(a) Deciding the shooting direction. (b) Image showing background sub-
traction, where the goalkeeper is high-
lighted.

Fig. 7. Goalkeeper recognition.

1) Detect the opponent striker using background sub-
traction, and detect the approaching of the opponent
striker by the distance between the striker and the
ball.

2) Predict the direction of the ball that the opponent
striker will kick by positional relationship between
the striker and the ball. For example, if the opponent
striker is located left of the ball, the opponent striker
more likely to kick to right.

3) Move to the predicted direction.

Using this method, the goalkeeper was expected to make a
rapid movement to make a block because the time between the
prediction and approach to the ball was short. However, the
walking speed of our robot was not sufficient to successfully
make a block, depending on the speed of the opponent robot.
To address this problem, we developed another goalkeeping
strategy to decide the direction the goalkeeper moved in, which
depended on the current position of the opponent striker and
that of the black obstacle at the start of the game.

IV. RESULTS

Our results in the competitions are summarized in Table II
[7].

The ratio of successful shots was only 24% because our
vision system was not adjusted adequately in the round robin
tournament. In the first trial of round robin 4, our robot
successfully blocked the shot of the opponent HeuroEvolution
AD. However, our robot failed to block any shots in the
remaining trials, because the opponent team changed their
attack strategy.

In the semifinal and the final, the ratio of successful shots
improved to 80% (Fig. 9), because the robot adjustments were

Opponent is 

 left of the ball.

Opponent will kick to

    this direction!

(a) Detection of the opponent robot
and the shooting direction.

(b) Image with background subtrac-
tion, where the opponent is high-
lighted.

Fig. 8. Opponent recognition.

completed. Our robot made a successful block in the semifinal
and the final (Fig. 10). Our ratio of successful blocks was only
27%, but HeuroEvolution AD’s ratio was 0%. HeuroEvolution
AD’s ratio of successful shots throughout all of the competition
was 80%, which highlights the importance of successful blocks
in our championship victory.

V. CONCLUSION

This study explained the technical strategy used by JoiTech
to win the RoboCup 2013 humanoid league adult size cham-
pionship. We had to solve specific problems to win the
RoboCup soccer humanoid adult size championship. The first
was a limitation of the number of times that testing could
be performed, which was mainly due to hardware constraints.
The second was that the number of shots was limited by
the rules, which required successful shooting and blocking.
We developed a versatile simulator to solve the first problem,
which comprised six different input and output combinations.
The virtual world with a recorded data stream allowed us to
conduct testing in near-real environment without damaging
the robot. This drastically reduced the number of tests on
required the real robot. With respect to the second problem,
predicting the direction in which the robot and the opponent
robot kicked the ball improved the accuracy of shooting and
blocking. These two improved the likelihood of successful

TABLE II. RESULTS IN THE COMPETITIONS

Match Opponent Result
Round Robin 1 Tsinghua Hephaestus 1-0
Round Robin 2 ROBIT 2-0
Round Robin 3 EDROM Adult Size 1-0
Round Robin 4 HeuroEvolution AD 1-4
Round Robin 5 Tech United Eindhoven 1-0
Semifinal Tsinghua Hephaestus 4-1
Final HeuroEvolution AD 4-3



Fig. 9. Shooting during the competition: the robot turned to the left because the opponent and the black obstacle were to the right of the goal.

Fig. 10. Blocking during the competition: the robot moved to the left when the opponent was close to the right side of the ball.

shooting and blocking until the final match. Thus, we won the
championship and the best humanoid award (”Louis Vuitton
Cup”).

The versatile robot simulator was useful for testing at the
strategy level, but it could not be used for testing at the motion
level (e.g., for throw-ins). It is difficult to simulate real robot
motions because of the complex computations required, such
as modeling contact with objects. In most cases, the robot’s
motions were not created by a simulator, but instead were
refined by trial and error using real robots. Kawai et al. [8]
proposed a method that can reduce the number of trials when
adjusting robot motions. We could produce a system with a
lower computational load to refine the robot motions by adding
this method.

Recently, the quality of the adult size competition with
simple rules has improved drastically. In the next step, the
adult size robots will be required to be more dynamic and
to use a flexible strategy like the other size league, so the
rules will be closer to actual human soccer. Thus, it will be
necessary to develop a more flexible and general system to
ensure successful shooting and blocking in the future.
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