
GOL - A Language to Define Tactics in Robot Soccer

Matthias Hofmann and Florian Gürster*

Abstract— Humanoid soccer serves as a suitable benchmark
problem for research in artificial intelligence and robotics, and
has seen impressive progress in recent years. Thus, many teams
participating in the Standard Platform League (SPL) of the
RoboCup competition1 were focusing on improving basic skills
for many years. But flexible and fast behavior engineering
incorporating team tactics still remains as a challenge, albeit the
application of sophisticated team play, consisting of tactics and
strategies are still evolving, especially on the robot hardware.
In this paper, we introduce the novel language GOL (Group
Organizing Language) to design tactical instructions in robot
soccer. In addition, we show how the visual editor TOR (Tactic
Organizer for Robots) facilitates behavior engineering. Finally,
we evaluate the developed components by suitable experiments.

I. INTRODUCTION AND MOTIVATION

Humanoid soccer made impressive progress on the hard-
ware level and software level during the last decade. This
includes basic skills in motion (e.g. kicking the ball), and
cognition (e.g. localization). One of the next steps in the
evolution of robot soccer is tactical team play. It becomes
more and more important, and is no longer restricted to
simulation.

The development of sophisticated team behavior usually
requires major changes in the behavior code. Behavior en-
gineers must model game situations, and proper actions to
be taken in these situations. This is a complex, cumbersome,
and error-prone process that requires a lot of testing and
tuning. To facilitate these tasks, we introduce the language
GOL. It enables users to easily define, and model tactical
instructions within minutes. There are similarities between
GOL, and soccer coaches in real soccer where tactics are
explained to the players visually by using a board.

The remainder of the paper is structured as follows:
Related work is briefly described in section II. The tactic
description language GOL, including TOR, is discussed in
section III. The evaluation in section IV consists of a use case
analysis, and exemplary shows how GOL can be applied to
compare different implementations of behaviors. Section V
consists of a conclusion, and future work.

II. RELATED WORK

In robotics, there is a plethora of domain-specific lan-
guages to serve different requirements from particular ap-
plication areas. Since this work is related to design tactics
and behaviors in the context of robot soccer, we briefly
summarize a selection of suitable programming languages.

Robotics Research Institute, TU Dortmund University, , Germany
{forename.surname}@tu-dortmund.de

1http://www.robocup.org

In 1997, the programming language GOLOG was intro-
duced [1]. In this language, concepts of logic programming
similar to PROLOG were integrated. An important aim of
developing GOLOG was the application of the situation
calculus that increases the level of abstraction in robot
programming. However, this approach showed limited appli-
cability, mainly because the transition of the real world into
a logical model is still one of the big challenges in artificial
intelligence [2].

With the introduction of coach agents into the RoboCup
simulation league, COACH UNILANG was developed by a
group called FC Portugal, participating in the RoboCup 3D
Simulation League2 [3]. COACH UNILANG is a standard
language for coaching robot soccer teams. It enables high-
level and low-level coaching including tactics, formations
used in each situation, and giving instructions. Moreover, the
coach is able to send game-related information to the players
such as statistics, and a model of the opponent team. The
main difference between GOL and COACH UNILANG is
that GOL is designed to be league-independent. GOL comes
with visual editing tools as well.

In robot soccer behavior, another important language
called XABSL was introduced by the GermanTeam of the
former 4-legged Legaue in RoboCup [4],[5]. XABSL defines
behavior by using hierarchical finite state machines. The core
idea of programming with XALBSL is the option graph.
Starting from the root option, several other options are called.
Within each option, a finite state machine is defined, and each
state consists of an action to be taken. For decisions, so called
symbols are used. These variables must be implemented by
the behavior engineer before they can be used in XABSL.
It requires the compilation of source code by utilizing the
XABSLEngine. This way, different XABSL behaviors can
be exchanged separately without recompiling the source
code of other components. XABSL is a popular and well-
established solution for behavior programming, especially in
the RoboCup community.

There is another XABSL implementation called
CABSL[6] which is based on C++ macros. This way,
behavior code is directly integrated into the software that
controls the robot. An important advantage of CABSL is
that variables and functions of other components can be used
directly instead of creating a variety of symbols. Tactics
in XABSL and CABSL can be defined by introducing
symbols that provide tactical information. However, this is
a time-consuming, and error-prone process.

2http://simspark.sourceforge.net/wiki/index.php/
Main_Page

behnke
Schreibmaschine
The 10th Workshop on Humanoid Soccer Robots15th IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, November 2015



III. GOL - A SOCCER TACTICS DESCRIPTION
LANGUAGE

In this section, we introduce the soccer tactics description
language GOL. The technological basis for the language is
JSON3. JSON is a lightweight data interchange format that
is both, human-readable, and machine-readable. GOL defines
a data structure which is called tactic map, and each tactic
map consists of a set of tactical instructions. The entire tactic
map is stored in one file. The JSON schema that defines the
tactic map is publicly available on GitHub4.

A. Tactical instructions

Tactical instructions define the particular behavior of a
team of agents as a reaction on specific game situations,
or game conditions. Tactical instructions consist of the fol-
lowing objects:

• A set of preconditions that decide whether the tactical
instruction becomes active, i.e. which team behavior is
currently executed. Subsection III-B describes the set of
preconditions in more detail.

• A representation of the ball. This consists of the current
ball position, and the prospective ball position. In this
case, prospective means the desired position of the ball
after executing the tactical instruction.

• A representation of the own team players and their
current, and prospective positions on the field.

• A representation of the opponent players. There is no
prospective value as the tactical instruction must not
control the opponent team.

• A group of team players. Each group has exactly two
elements, the group leader, and the follower. This way,
the user may construct a formation of players. Further-
more, the distances in vertical, and horizontal direction
between the leader and the follower are defined.

B. Preconditions and activation of tactical instructions

The decision whether a tactical instruction becomes active
is defined by the preconditions that can be categorized as
follows:

• Organizational preconditions: The user gives the name
of the precondition, and the field type (e.g. Humanoids,
SPL). He is able to add remarks on the specific tactical
instruction.

• Player-dependent preconditions: This type consists of
the number of own, and opponent players (number of
own / opponent players, goalie). This way, it is possible
to design a tactic map that will be activated when one
team has less player on the field than the other.

• Score-dependent preconditions: The user is able to
specify the goal difference. For example, if the own
team takes the lead, it could play more defensive.

• Time-dependent preconditions: This category consists of
the minute of play, the remaining time, and the half time
can be specified.

3http://json.org/
4https://github.com/NaoDevils/GOL

Two fields in the precondition structure are mandatory:
The name of the tactic map, and the name of the competition
(e.g. the Standard Platform League, SPL in RoboCup).

C. Integration into the behavior control system

GOL is designed to easily integrate into existing robotic
frameworks. Hence, developers need to implement the in-
terface between GOL and their particular framework. This
means in particular that all data that is required by GOL,
needs to be provided properly. For instance, the positions
of the robots on the field along with the ball position
must be present, and continuously updated. A more detailed
specification of all variables needed by GOL is part of
the scheme file (see section III). The performance of GOL
depends on the quality of data that is being fed into the
system. Moreover, GOL can be extended by the developer
according to the specific needs of the team, and requirements.

In summary, there are two important tasks to be imple-
mented: Firstly, a selection mechanism for the tactic instruc-
tion that is going to be executed, has to be provided. We use
the following policy: For each element present on the tactical
instruction board, the corresponding data structure that is
used and updated in the robotic framework (e.g. player,
ball) has to be identified. The difference between the desired
position specified by GOL, and the real position calculated
by the robotic framework, is compared by utilizing the
Euclidean. The tactical instruction board with the smallest
deviation from the current game situation is selected and
becomes active. Since not all possible situations are usually
covered by the tactic map, a backup behavior is required. In
this case, we use the standard RoboCup behavior.

Secondly, a robot selection mechanism must be imple-
mented. Each robot is assigned a specific position where it
has to move according to the team instruction. Note that
the agents do always execute underlying behavior that is
implemented (e.g. dribbling, or kicking the ball when the
robot is in an appropriate position). For instance, the ball
can be blocked by a robot when it rolls in its direction. For
our experiments, we use the framework of team NaoDevils
that is based on [6]. Both, the position selection mechanism,
and the tactic map selection mechanism, offer a high degree
of freedom. Thus, behavior engineers are free to specify
behavior that is going to be undertaken by the individual
robot.

D. TOR - A VISUAL TACTICS EDITOR

Although a manual definition of the tactic map is feasible,
we introduce the visual tactic editor Tactic organizer for
robots, TOR. This WYSIWIG5 editor enables the user to
define a tactic map within minutes. The tactic editor was
written in C++, and can be obtained from GitHub 6.

Figure shows the situation editor, and figure the graphical
user interface of TOR. The user is able to define the tactic
map, the tactic instructions, and their entire properties (see

5what you see is what you get
6https://github.com/NaoDevils/GOL/tree/master/TOR



Fig. 1: The graphical user interface to edit tactical instruc-
tions.

subsections III-A, and III-B). The user-friendly editor fea-
tures drag-and-drop, and consists of context-sensitive menus
for editing objects on the field, and the field itself.

Fig. 2: The graphical user interface to edit field properties.

IV. EVALUATION

In order to show the functionality of tactic maps written in
GOL, we conduct a series of test games. Note that the focus
of the evaluation is the demonstration of the functionality of
GOL as a language, and its applicability in game situations,
and not on the performance of one particular tactic map that
has been designed by a behavior engineer. Behavior engi-
neers that would like to compare the performance of different
tactics should play many more games to get resilient results.
Therefore, the series of test games give a first impression of
the potential, and usefulness of GOL. Moreover, the series
of test games provide a basis to discuss how individual tactic
maps can be scrutinized to define design guidelines and
identify potential problems. In order to get an impression
about the influence of the different tactic maps on the game,
we provide movies of a selection of test games. They can be

obtained from GitHub 7.

A. Experimental Setup

We use SimRobot[7] in the version 2014 for our ex-
periments. The test games follow a league system where
each behavior is playing against each other two times with
alternating kickoff and a total game length of ten minutes.
All test games are conducted with five versus five players,
including one goalie for each team. A team gets three points
for a win, one point for a draw, and zero points for a lose.
Four different teams were used for the tests:

1) NaoDevils (T1): This serves as the reference behavior.
It has been successfully used in RoboCup 2014 by
team NaoDevils. The team reached the quarterfinals in
the competition.

2) One defensive instruction (T2): This very simple tactic
map consists of four team players that take very
defensive positions around the own goal. The player
nearest to the ball shoots it towards the center circle.
There is no offensive action being undertaken. The
naive tactic map is shown in Figure 3.

3) Few instructions (T3): This tactic maps consist of
four instructions. The first one is to define the initial
positions before kickoff. The second instruction defines
a kickoff behavior where the ball is moved to the
outer part of the field. The robot behind the player
conducting the kickoff is moving to the position where
the ball is intended to be. A third instruction defines the
defensive behavior. Here, the goal is to clear the ball
as soon as possible (see Figure 4). The last instruction
defines the offensive play of the team (see Figure 5).
While two robots are defending to counter distance
shots, two robots are close to the opponents’ goal
trying to obtain a goal.

4) Six instructions (T4): This tactic map is the most
complex one. The total time to create this map was
about 10 minutes. It consists of more individual situa-
tions, e.g. if the opponent goal is blocked, or a critical
situation. Figure 6 shows an offensive situation that is
going to be executed.

B. Results and Discussion

The following tables I, and II show the results of the
individual games, and the final ranking. It is notable that
tactic map three was the most successful while the reference
behavior is third. As expected, the defensive behavior (T2)
did not score at all. Although T3 consists of less instructions
than T4, T3 performed better. This is due to the fact that
T4 ran occasionally into hysteresis problems. Moreover, the
simulation environment does not take the complete set of
game rules into account. For instance, penalties resulting
from pushing, are not considered.

7https://github.com/NaoDevils/GOL/tree/master/
Games



Fig. 3: The naive tactic map (T2).

Fig. 4: Example of a defensive tactic instruction (T3).

Fig. 5: Example of an offensive tactic instruction (T3).

Fig. 6: Example of an offensive tactic instruction (T4).

Game Blue Red Result
A1 T1 T2 0:0
A2 T3 T4 1:0
A3 T2 T1 0:1
A4 T4 T3 0:1
A5 T1 T3 1:0
A6 T2 T4 0:1
A7 T3 T1 1:1
A8 T4 T2 1:0
A9 T1 T4 1:1
A10 T2 T3 0:1
A11 T4 T1 1:0
A12 T3 T2 0:0

TABLE I: Game results.

It is recommendable that tactic maps are sufficiently
different from each other to avoid oscillations in selecting
the tactic map to become active. Thus, it is obvious that
different situations for defensive situations, the midfield, and
offensive play should be designed. Since tactic maps offer a
high degree of freedom, behavior engineers are enabled for
fast and easy changes in the tactical orders without changing
the code. However, extensive testing is recommended to
elaborate how tactic maps work together to increase the game
performance.

It has to be noted that, with the current version of GOL, it
is possible to give agents different instructions within one
tactic map. This occurs when an instruction given for a
group is different from the instruction given to individual
agents. This has to be taken into account when analyzing
and debugging the behavior.

Rank Team Goals Diff. Points
1 T3 4:2 2 11
2 T4 4:3 1 10
3 T1 4:3 1 9
4 T2 0:4 -4 2

TABLE II: Final Ranking.



V. CONCLUSION AND OUTLOOK

This paper introduced the tactics description language
GOL, and the visual tactic map editor TOR. We have shown
that GOL successfully integrates into an existing robotic
framework. Moreover, we described a use case, conducted
a series of test games to show the applicability of tactical
instructions in robot soccer. Finally, we discussed design
guidelines.

Future work will include a more detailed evaluation of
GOL as language, and TOR as the complementing user
interface. Possible setups for the performance evaluation are
the upcoming RoboCup events. Users, mainly from the area
of behavior engineering, will be asked to try GOL, and
TOR, and to rate the language according to its usability, and
usefulness.

For future work we will test the system on the physical
robot. GOL is a promising approach to behavior engineering
since once it has been integrated into the existing robotic
framework, it rapidly increases the flexibility of the team
behavior, and speeds up behavior design. Moreover, the
language can be extended to be utilized by a coaching robot
that observes the game from outside the field. The coach
robot could select the tactical instruction within the tactic
map, and communicate it to the active players on the field.

REFERENCES

[1] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,
“Golog: A logic programming language for dynamic domains,” The
Journal of Logic Programming, vol. 31, no. 1, pp. 59–83, 1997.

[2] F. Dylla, A. Ferrein, G. Lakemeyer, J. Murray, O. Obst, T. Röfer,
F. Stolzenburg, U. Visser, and T. Wagner, “Towards a league-
independent qualitative soccer theory for robocup,” in RoboCup 2004:
Robot Soccer World Cup VIII. Springer, 2005, pp. 611–618.

[3] L. P. Reis and N. Lau, “COACH UNILANG-a standard language for
coaching a (robo) soccer team,” in RoboCup 2001: Robot Soccer World
Cup V. Springer, 2002, pp. 183–192.

[4] M. Lötzsch, J. Bach, H.-D. Burkhard, and M. Jüngel, “Designing
agent behavior with the extensible agent behavior specification language
xabsl,” in RoboCup 2003: Robot Soccer World Cup VII. Springer, 2004,
pp. 114–124.

[5] M. Loetzsch, M. Risler, and M. Jungel, “XABSL-a pragmatic approach
to behavior engineering,” in Intelligent Robots and Systems, 2006
IEEE/RSJ International Conference on. IEEE, 2006, pp. 5124–5129.

[6] T. Röfer, T. Laue, J. Müller, M. Bartsch, M. J. Batram, A. Böckmann,
M. Böschen, M. Kroker, F. Maaß, T. Münder, M. Steinbeck, A. Stolp-
mann, S. Taddiken, A. Tsogias, and F. Wenk, “B-human team report
and code release 2013,” Tech. Rep., 2013.

[7] T. Laue and T. Röfer, “Simrobot-development and applications,” in
International Conference on Simulation, Modeling and Programming
for Autonomous Robots (SIMPAR). Citeseer, 2008.


