
Rhoban Hardware and Software Open Source Contributions
for RoboCup Humanoids

Quentin Rouxel, Grégoire Passault, Ludovic Hofer, Steve N’Guyen, Olivier Ly

Abstract— Three newly released hardware and software open
source contributions are presented. The first one is a new
mechanical and electronics design for low cost stain gauge based
foot pressure sensors. The second is a lightweight user interface
library dedicated to robotics applications and allowing for an
“on the fly” interaction with an on board program. The third
one is an implementation of an open loop walk generator for
humanoid robots based on splines and inverse kinematics.

I. INTRODUCTION

The Robocup soccer Humanoid league is a highly com-
petitive challenge with a regular increasing difficulty. The
2015 update of the rules included an artificial grass field,
a white ball and white goals. These new problems make it
quite difficult for new teams to enter the competition from
scratch. Moreover, the willingness to create collaborative
teams emphasizes the need for open platforms. In this
context, this work presents three open source contributions
from the Rhoban team (Humanoid kid size) to the Robocup
community. These three projects are presented in the follow-
ing sections and are entirely independent on each other.

II. LOW COST FOOT PRESSURE

The locomotion is one of the biggest challenge of hu-
manoid robotics, and especially with the RoboCup humanoid
league constraints that only allow sensors and actuators that
are comparable with humans.

Typically, for walking, shooting or balancing, one can ask:

• Where is the center of pressure of the robot?
• Which foot is actually touching the ground and support-

ing the robot?
• Is the robot standing on the ground, or falling?

All these questions can be estimated using IMU (ac-
celerometer, gyroscope), the position of the motors and a
complete model of the robot. However, sensing the force
applied by the robot on the floor, and thus on the tips of the
feet, brings new information.

Human-size recent robots, such as TORO [1] feature
6DOF industrial force sensors in each foot, which are very
high quality but also very expansive measurement instru-
ments. This is why we decided to produce a custom design
that would be both affordable and suitable for small to mid-
size humanoids [2].

The authors are with the Rhoban team, LaBRI, Univer-
sity of Bordeaux, France. Emails: {quentin.rouxel,
gregoire.passault, ludovic.hofer,
steve.nguyen, olivier.ly}@labri.fr

Fig. 1: On the left side, Sigmaban Kid-Size Humanoid
Robot. On the right side, low cost foot pressure sensors made
of 4 strain gauges and measuring the weight on each cleat.
This mechanical assembly is robust and well adapted to soft
artificial grass improving the stability of the robot

A. Overview

We propose a low-cost force sensing foot that is suitable
for small humanoid robots that can be found here:

https://github.com/Rhoban/ForceFoot

This contribution is composed of mechanical, electronics
and firmware designs.

B. Mechanical design

The well-known Nao robot [3] features FSR sensors that
allows to measure the force below the feet. However, indus-
trial standard 6DOF sensors used in human-sized humanoids
are based on highly precise strain gauges.

A consideration for this new design was the transition from
flat carpet to a soft ground in the humanoid league, which
led to the integration of cleats below the feet, switching from
a plane contact to contact points. The cleats were adopted
by almost all teams, because it distributes ground contact
forces on small surfaces, making easier to cross the turf and
increasing the stiffness of the contact.

We used strain gauges based load cells, which are me-
chanical parts that are directly integrated to the structure of
the foot and which infinitesimal deformations are measured
using small resistors network depicted on Fig. 1. The result-
ing foot is about 85x130x40mm and weighs approximately
200g.

The deformations of the mechanical part are such that
expansion and compression occur on each side when stressed
as simulated in Fig. 2.

https://github.com/Rhoban/ForceFoot
behnke
Schreibmaschine
The 10th Workshop on Humanoid Soccer Robots15th IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, November 2015

Fig. 2: Exaggerated deformations of a mechanical standard
load cell with a force applied on it using finite elements
method. We can see that both compression and expansion
occur on the same side. This is where the strain gauge
resistors are installed.

C. Electronics

On each of these parts (four per foot), four strain gauge
resistors are installed, forming a full Wheatstone bridge
shown in Fig. 3.

Fig. 3: Four strain gauges are mounted as a full Wheatstone
bridge, two per side of the mechanical load cell.

The signal measured is the differential voltage between
the two points of the Fig. 3, since this is a low voltage, it
has to be amplified.

We used the HX7111 chip, featuring an amplification of
128 and a 24 bit Σ∆ ADC and providing a serial interface.
We designed a custom board including this chip and a MCU
that is integrated on the foot.

D. Using the measures

Lots of humanoid robots of the RoboCup use Dynamixel
servos, and all of them use daisy chain serial bus. This is
why we designed our board with a Dynamixel compatibility.

Before using this measures, one should calibrate it. A good
method to do this is by putting several known masses on
the gauge and processing a linear regression. This allows to
compute both the zero offset and the linear coefficient.

1The HX711 is a mainstream low-cost integrated circuit designed for
weigh scales applications

Here are some interesting measures one can then get:
• The total weight: this will inform the system if the

robot is holding on its feet or has fallen. Combined with
the IMU, one can know if the robot is handled by an
human. This can also be used to detect if everything is
correct when performing system check or if any external
force is applied.

• The foot ratio: this is the distribution of the weight
between the two feet. This can be useful when walking
because it depicts what is the current support phase.

Total weight and lateral center of pressure measures over a
walk cycle are illustrated on Fig. 5.

E. Estimating the center of pressure

Note here that the actual center of pressure is partially
estimated since only the force projected on vertical Z axis
is measured. All horizontal ground reaction forces are not
considered.

We can model each load cell with a spring of rigidity Ki

(newton/meter) and a “plate”, which correspond to the foot.
The pressure of the robot is then represented by a single

force P on this plate (see Fig. 4).

Fig. 4: Model of one foot using four strain gauges.

The force that is applied on the ith cleat at the ground
contact is:

Fi = Ki∆i = KiCiRi

Where ∆i (meter) is the deformation of the gauge, Ci

(meter/volt) is the linear relation between the length of the
gauge and the voltage Ri measured from the Wheatstone
bridge (the “raw” measure). Note that, in general, one will
likely calibrate simultaneously Ki and Ci, getting an unique
gain per gauge (which is KiCi, newton/volt).

Statically, the sum of the forces and moments is zero, i.e.:
i=4∑
i=1

Fi + P = 0

{∑
i xiFi + xpP = 0∑
i yiFi + ypP = 0

Thus:

P = −

∑
i Fi

xp = −
∑

i xiFi

P

yp = −
∑

i yiFi

P

Note that we can use this equation to estimate either the
center of pressure for one specific foot or for the whole robot.
However a kinematic model of the robot is needed in order
to know the relative positions of each foot.

-15

-10

-5

 0

 5

 10

 15

 20

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-15

-10

-5

 0

 5

 10

 15

 20

Co
P

Po
sit

io
n

(c
en

tim
et

er
s)

W
ei

gh
t (

ki
lo

gr
am

s)
Walk Phase

Lateral Center of Pressure
Total Weight

Lateral Center of Pressure
Total Weight

Fig. 5: The measured total weight of both feet and lateral (Y)
estimated position of the center of pressure of the robot are
plotted against the walk phase (between 0 and 1) while the
robot is walking in place. Green and Red points are measured
over several periodic walk cycles. Blue and purple pick out
one typical trajectory. At phase = 0.1 and 0.6, the support
foot exchange and the ground collision are clearly visible.

III. RHOBAN INPUT OUTPUT LIBRARY

The robotics field involves both theoretical and exper-
imental knowledge. During experiments, a complex piece
of software is controlling an advanced piece of hardware
prone to fast and unstable dynamics as in the example of
humanoid robots. Since an established theoretical framework
for perception and motor control of biped robots is far from
being achieved, current implementation architecture are still
highly prototypes.

Field experiments require a lot of software debugging,
system monitoring and parameters tuning while dealing
with the physical robot. In practice, an efficient robot user
interface is often necessary, especially in the context of the
RoboCup soccer competition where a fast parameter update
can be a game changer.

A. Decentralized and Monolithic Architecture

The Robot Operating System (ROS) is one of the most
famous robotics frameworks [4] providing a large set of tools
handling software organization, library sharing, behavior
monitoring, configuration and more. The core architecture is
highly decentralized and modules are communicating using
network packet messages.

On the other hand, the opposite architecture is monolithic.
The whole system lies in one process and communication is
achieved by direct memory access and function calls. This
simple architecture is widely used in RoboCup Humanoid
community with some notable exceptions ; the NimbRo

team [5] for instance.

In the RoboCup context, we often need software modules
to be able to get information from almost every other
modules. In this case, a decentralized architecture would
require a lot of communication channels (almost a complete
graph of all the modules). Thus, for optimization purpose
one could prefer a monolithic architecture.

This contribution aims to build a lightweight and easy to
use library in order to achieve the same generic usability
that ROS but on monolithic architectures. Moreover, this
library also comes with a command-line tool for easy user
interaction.

B. RhIO Overview

We propose the open source library RhIO (Rhoban Input
Output Library) targeting existing monolithic projects avail-
able at:

https://github.com/Rhoban/RhIO

This project is addressing many software engineering
issues encountered during our four entries to the RoboCup
Kid-Size Humanoid. RhIO is a lightweight C++ library that
is linked against the robot application in order to interact
with the program on-the-fly, through its integrated server.

A quick summary of RhIO features 2 is listed below and
developed in following subsections:

• Lightweight and low performance overhead
• Simple integration with existing project
• Very few code to write to monitor/control a new variable
• Real time variables monitoring and logging
• Real time parameters update
• Unix-like folder tree based organization
• Robot Configuration management
• Terminal shell and command line interface
• Client shell allows for real time plotting with Gnuplot
• Based on ZeroMQ network library which allows exten-

sions to any clients (graphical or not) 3

RhIO has been successfully tested and used during
RoboCup 2015 in China and is already integrated within
our agricultural autonomous robots projects [6].

Based on our RoboCup experience, such a system could
be of great help when several people are collaborating
together on different parts of the robot’s architecture. RhIO
is also an attempt to propose a generic user interface
to robots. Without knowing how a module is internally
structured, one can still easily debug and tweak parameters
through the interface. Such standard user interfaces may
become interesting when RoboCup soccer teams will
increase in number and when heterogeneous robots will

2An example video can be found at: https://youtu.be/
MOizgXYENLc

3See all supported language at http://zeromq.org/bindings:
_start

https://github.com/Rhoban/RhIO
https://youtu.be/MOizgXYENLc
https://youtu.be/MOizgXYENLc
http://zeromq.org/bindings:_start
http://zeromq.org/bindings:_start

play in the same team.

The RhIO library is divided into two major components
as shows in Fig. 8. On the robot’s side, the server is running
the monolithic application. On user’s side, one or many
clients are connected to the server through TCP protocol
(based on standard ZeroMQ4 network library) for user
interaction.

C. Server Side

Embedded on
Robot's Computer

Users Side

Monolithic Main Application

RhIO Client

RhIO Server

ZeroMQ (Network Library)

Module

ZeroMQ (Network Library)

Module

Module

Module

Parameters and
configuration manager

RhIO Shell
Monitoring,
Tunning,
Plotting

RhIO Client

ZeroMQ (Network Library)RhIO Shell
Monitoring,
Tunning,
Plotting

RhIO Architecture

Fig. 6: RhIO Client-Server architecture
RhIO Root:
-vision/
-pressure/
-sensors/
-teamplay/
-moves/

-approach/
-robocup/
-standup/
-walk/

footYOffset float 0.025
freq float 1.7
supportPhaseRatio float 0
trunkRoll float 0
trunkYOffset float 0
trunkZOffset float 0.02
[...]

[...]
-servos/

-head_pitch/
readingErrors int 18
angle float 69.7852
speed float 0
temperature float 36
torque float 0.966764
voltage float 16.3
[...]

-head_yaw/
-left_ankle_pitch/
-left_ankle_roll/
-left_elbow/

Fig. 7: Example of RhIO root node showing our internal
software structure at RoboCup 2015 (Humanoid Kid-Size
League). Our main modules are displayed at root level and
some sub nodes show how values can be used to monitor
motor state and configure the walk engine

RhIO allows for the creation of 3 kind of global objects
on the server side. These objects can then be accessed
everywhere within the robot’s application:

• Values (of 4 basic types5) used for monitoring or as
configuration parameters. Values have meta parameters

4http://zeromq.org/
5Types are either boolean, integer, floating number or string

such as their name, an optional comment, optional min-
imum and maximum range along with a flag indicating
if the value is temporary or if it will to be persisted on
the disk when the configuration is saved.

• Functions used by the client to call custom functions on
the robot side, with optional arguments. They are used
to trigger special actions or display monitoring report
from the robot.

• Output stream allows for displaying textual information
on a specific channel. Its primary use is for debugging
and acts as a remote logging output.

Each of the previous object is attached to a Node belong-
ing to a virtual hierarchy tree. In practice, each root node
represent a system module (as motion, vision, sensors, . . .).
A tree example is partially displayed at Fig. 7.
It is then possible to easily interact with this representation
with a command line tools mimicking a UNIX shell.

More complete documentation is available on the project
webpage 6.

D. Client Side

Fig. 8: RhIO client interface showing the command line
shell, the command line sliders (parameters tuning) and the
Gnuplot real time plotting.

For now, the only client implemented is the command
line Shell shown in Fig. 8. The navigation inside node
hierarchy is implemented in the same way as folders on
an Unix system. Nodes are represented as folders and
values (and streams) are represented as files. Some useful
commands similar to the bash environment are implemented.

The Shell is providing the following features:
• Network connection through TCP protocol and ZeroMQ

library
• Multiple clients can be connected at the same time
• Terminal-like environment
• Command line sliders (NCurses) used to tune multiple

parameters
• A Gnuplot binding allows to monitor values in real time
• Joypads (on Linux) can be binded to some parameters.

For example, in order to easily control the robot’s walk
directly through the RhIO walk parameters.

6See API documentation at: https://github.com/Rhoban/
RhIO/blob/master/Docs/api.md

http://zeromq.org/
https://github.com/Rhoban/RhIO/blob/master/Docs/api.md
https://github.com/Rhoban/RhIO/blob/master/Docs/api.md

• The client library is implemented in C++. Writing a new
client in the same language would be quick and easy.

E. Future Work

At the current state, the library lacks a support for an
image type. This particular kind of communication would be
very useful since monitoring vision processing is of primary
importance. Both server side and proper client side tools are
needed to efficiently monitor the vision module ; debugging
tagged images does not need to be computed when not
monitored. In addition, a graphical client (could be web-
based) might be convenient.

IV. OPEN LOOP WALK ENGINE

X (forward)

Y (lateral)

Z (height)

roll

pitch

yaw

A
nk

l e
 to

gr

o
un

d 1

Head (pitch/yaw)

Elbow

Shoulder (pitch/roll))

Hip (yaw/pitch/roll)

Knee

Ankle (pitch/roll))

K
ne

e
t o

 a
n k

le

H
i p

 to
 k

ne
e

Feet lateral distance

Trunk reference
 frame

Fig. 9: Kinematic model and reference frame of the hu-
manoid. 20 degrees of freedom, 6 per leg.

Biped walk is an extensively studied problem and various
approaches have been tried to address it, from classic auto-
matic control and the well known ZMP, bio-inspiration and
CPG to machine learning.

The theoretical problem is quite difficult, involving
complex kinematic structures, high dimensional control,
dynamics motion and changing ground contact with
collisions. However in practice, acceptable stable and
omnidirectional walk engine can be achieved in a rather
simple way on small humanoid robots along with good
mechanical design and some expert manual parameters
tuning. The walk engine that we propose here is sharing
similar ideas that were first exposed by Behnke [7].

Periodic splines generate the main oscillatory pattern used
to define feet and trunk cartesian parametrized trajectories.
Motor target positions are then computed through "standard"
inverse kinematics.

The library IKWalk that we propose is a C++ implemen-
tation of a typical fully open loop walk engine for humanoid

robots. This implementation was used on artificial grass by
the Rhoban Football Club during the soccer competition
Robocup Kid-Size 2015 in China. The only software de-
pendency needed is the Eigen linear algebra library 7.

https://github.com/Rhoban/IKWalk

A. Walk Engine Overview

The implemented engine is only considering the 12
degrees of freedom of the legs. Fig. 9 shows the “standard”
small humanoid model design. Conveniently aligned 6
degrees of freedom per leg allow for a quite simple
analytic inverse kinematics. The center of the knee axis, the
intersection of the three rotation axes of the hip and the
intersection of the two rotation axes of the ankle are all
aligned on a vertical line.

This model is defined by 4 geometrical parameters: the
distances between

• the center of hip axes and knee axis
• the knee axis and the center of ankle axes
• the center of ankle axes and the ground
• the two feet

-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

No
rm

al
iz

ed
 s

pl
in

e

Phase

Step spline
Swing spline

Rise spline
Turn spline

-1

-0.5

 0

 0.5

 1

 1.5

 0 2 4 6 8 10 12

M
ot

or
 ta

rg
et

 p
os

iti
on

s
(r

ad
ia

n)

Time (seconds)

left hip yaw
left hip pitch

left hip roll
left knee

left ankle pitch
left ankle roll

Fig. 10: (Left) The four periodic spline patterns using
example parameters. The walk is only in single support
phase.

Fig. 11: (Right) Computed target positions for the left leg
with example parameters. Between t = 0...2 and t = 10...12,
the walk is stopped. Between t = 2...4, the robot walks in
place. Between t = 4...6, the walk is going forward. Between
t = 6...8, the robot is walking on the left with lateral steps.
And between t = 8...10, the robot is turning on its right.

The four splines patterns depicted in Fig. 10 are used to
generate the whole motion in Cartesian space. The walk cycle
begins at phase = 0 when the left foot just lands and starts
going backward. At phase = 0.5, the right foot lands and
the left foot takes off and goes forward when the double
support phase length is set to zero.

• Step spline: Forward and lateral footstep displacements
(X and Y axes) with respect to the trunk. Note that
at phase = 1, the left foot is landing with non zero
backward velocity.

• Rise spline: Foot motion in Z axis

7C++ header library available at: http://eigen.tuxfamily.org/
index.php?title=Main_Page

https://github.com/Rhoban/IKWalk
http://eigen.tuxfamily.org/index.php?title=Main_Page
http://eigen.tuxfamily.org/index.php?title=Main_Page

• Turn spline: Foot yaw rotation used for robot’s turning
• Swing spline: Lateral (Y) oscillation of the trunk with

respect to the feet used to move the center of mass
toward the supporting foot.

These normalized splines are then scaled and phase shifted
to build the actual foot target positions (X,Y,Z) and orienta-
tions and fed to the inverse kinematics.

B. Engine Parameters

The walk engine uses the following main parameters 8:
• Frequency of the complete walk cycle (two steps)
• Ratio between single support only to full double support
• Foot rise height (Z) during flying phase
• Trunk height (Z) from the ground
• Lateral (Y) distance offset between the two feet
• Amplitude of lateral (Y) swing oscillations
• Lateral swing phase shift with respect to the foot rise

timing
• Forward (X) trunk offset with respect to the feet
• Trunk pitch (forward) orientation
• Two parameters allow to tune the trunk and center of

mass trajectory as displayed in Fig. 12 9

In addition, these next “dynamic” parameters are updated
during the walk in order to control the walking direction
and achieve omnidirectional motion:

• Enabled ratio allows to stop and restart the oscillatory
pattern smoothly

• Length of forward (X) footstep
• Length of lateral (Y) footstep
• Yaw angle rotation of footstep for turning

The parameters should not be instantaneously updated in
the middle of the walk cycle since the discontinuity may
destabilize the robot. Parameters updates can either be
slowly smoothed or be flushed only at foot support swap
(phase = 0 or phase = 0.5).

The resulting motor target positions are displayed in
Fig. 11.

C. Closing the Loop

In practice, the performance of this open loop walk engine
is decent if used on a small humanoid robot with proper
mechanical design. For example, it is essential to reduce the
hip yaw backlash by using a needle roller bearing.

However, the system is still highly affected by small
external perturbations, especially during the lateral footsteps.
The major cause of falling occurs when the robot lateral
oscillation dynamics get desynchronized with the open loop
cycle.

A simple way to add a feedback reaction is to use the
foot pressure sensors presented in section I in order to detect
the actual support foot. The walk cycle phase can thus be

8Used values during Robocup 2015 can be found at https://github.
com/Rhoban/IKWalk/blob/master/Example/example.cpp

9The center of mass trajectory is simulated from a complete kinematic
model with masses of the robot

-0.06
-0.04
-0.02

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

ra
l Y

(m
et

er
s)

Forward X (meters)

Trunk
COM

-0.06
-0.04
-0.02

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

ra
l Y

(m
et

er
s)

Forward X (meters)

Trunk
COM

-0.06
-0.04
-0.02

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

ra
l Y

(m
et

er
s)

Forward X (meters)

Trunk
COM

-0.06
-0.04
-0.02

 0

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

La
te

ra
l Y

(m
et

er
s)

Forward X (meters)

Trunk
COM

Fig. 12: The walk engine allows to choose several possible
trajectories for the trunk and the center of mass during
a forward walk. Top view of 4 possible trunk and CoM
trajectories are shown.

adjusted by postponing the support foot exchange when not
enough weight is detected on the next support foot.

Despite its first practical efficiency, further work is re-
quired to investigate the full use of the pressure sensors for
the stabilization of the walk and to proceed to quantitative
benchmark.

V. CONCLUSION

We have presented three independent hardware and soft-
ware open source contributions to the Robocup community.
This effort will be pursued and we hope to be able to
collaborate with other teams in the future in order to improve
the sharing of knowledge in order to accelerate robots
development.

REFERENCES

[1] J. Englsberger, A. Werner, C. Ott, B. Henze, M. A. Roa, G. Garofalo,
R. Burger, A. Beyer, O. Eiberger, K. Schmid, et al., “Overview of
the torque-controlled humanoid robot toro,” in IEEE-RAS International
Conference on Humanoid Robots, 2014, pp. 916–923.

[2] G. Passault, Q. Rouxel, L. Hofer, S. N’Guyen, and O. Ly, “Low-
cost force sensors for small size humanoid robot,” in 2015 IEEE-RAS
International Conference on Humanoid Robots (Video contribution),
accepted.

[3] D. Gouaillier, V. Hugel, P. Blazevic, C. Kilner, J. Monceaux, P. Lafour-
cade, B. Marnier, J. Serre, and B. Maisonnier, “The nao humanoid: a
combination of performance and affordability,” CoRR abs/0807.3223,
2008.

[4] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2,
2009, p. 5.

[5] P. Allgeuer, M. Schwarz, J. Pastrana, S. Schueller, M. Missura, and
S. Behnke, “A ros-based software framework for the nimbro-op hu-
manoid open platform,” in Proceedings of 8th Workshop on Humanoid
Soccer Robots, IEEE Int. Conf. on Humanoid Robots, Atlanta, USA,
2013.

[6] O. Ly, H. Gimbert, G. Passault, and G. Baron, “A fully autonomous
robot for putting posts for trellising vineyard with centimetric accuracy,”
in Autonomous Robot Systems and Competitions (ICARSC), 2015 IEEE
International Conference on. IEEE, 2015, pp. 44–49.

[7] S. Behnke, “Online trajectory generation for omnidirectional biped
walking,” in Robotics and Automation, 2006. ICRA 2006. Proceedings
2006 IEEE International Conference on. IEEE, 2006, pp. 1597–1603.

https://github.com/Rhoban/IKWalk/blob/master/Example/example.cpp
https://github.com/Rhoban/IKWalk/blob/master/Example/example.cpp

	Introduction
	Low Cost Foot Pressure
	Overview
	Mechanical design
	Electronics
	Using the measures
	Estimating the center of pressure

	Rhoban Input Output Library
	Decentralized and Monolithic Architecture
	RhIO Overview
	Server Side
	Client Side
	Future Work

	Open Loop Walk Engine
	Walk Engine Overview
	Engine Parameters
	Closing the Loop

	Conclusion
	References

