
Analysis and Compensation of Biped Walking
Disturbances Caused by Model Abstractions

Oliver Urbann, Jan Hendrik Berlin, Matthias Hofmann, Ingmar Schwarz
Robotics Research Institute

Section Information Technology
TU Dortmund University

Abstract—In this paper, we identify and analyze reasons for
instabilities in closed-loop walking control. We show how abstrac-
tions from the physical robot to models, or from complex models
to simplified models in simulation influence the performance of
the walking motion. Furthermore, we present new algorithms
for compensation of these disturbances. This way they can be
lowered in advanced to reduce dependence on sensor feedback
stabilization.

I. INTRODUCTION

Biped locomotion is a popular research topic as it provides
enhanced mobility of robots in nature (e.g. forest) or in
environments designed for humans. However, usability of
biped robots is limited due to stability issues that are still an
ongoing research topic. There are numerous reasons for that,
ranging from external disturbances like obstacles, humans or
other robots to internal reasons, e.g. simplified robot models or
gear errors. Both classes of errors must be handled differently.
External disturbances cannot be foreseen and therefore require
active balancing in contrast to internal errors. In theory, all
these errors can be integrated into the model, although this is
in fact almost impossible.

The contribution of this paper is the analysis of internal
reasons for inaccuracies in biped locomotion. We reveal gen-
eral causes of internal disturbances to be helpful for various
researchers and present new algorithms to solve the exposed
causes. This paper is independent from specific walking algo-
rithms as we concentrate on the model and not on the way
it is utilized to generate the motion. However, our analysis is
based on the approach presented at the beginning of the next
section.

A. Related Work

Many cutting-edge walking algorithms are based on the 3D
linear inverted pendulum mode proposed by Kajita et al. [1]
or similar approaches [2]. In contrast to the prediction of the
simple model, the walk of a physical robot is less stable. It is
common sense that the abstraction from a real robot to a simple
model is a major reason for deviations. As a result, numerous
researchers propose various extensions to overcome specific
flaws in the simple single center of mass (CoM) abstraction.
Pratt et al. [3] propose to include a flywheel in the model
of the robot to calculate dynamics of a tilting robot. Seven
et al. [4] propose utilizing a second CoM for the swinging
leg. Buschmann et al. [5] propose to include a third CoM for

Fig. 1. Various levels of abstraction are known for motion generation to
overcome computational complexity. ”No dynamics” denotes motions with
manually optimized foot trajectories or similar approaches. The simplest
known model for a robot consists of one CoM. More complex models were
proposed to include the leg dynamics. RBD is usually utilized by simulators
although it is a strong abstraction compared to a real robot.

both legs. Kajita et al. [6] measure the difference between a
simulated robot and the predicted dynamics of the 3D-LIPM
to compensate the Zero Moment Point (ZMP)1 error. While
this is in fact not an improved model, it corrects the errors
of the simple model by utilizing a rigid body simulation and
is therefore far less abstract. However, he applied a second
preview controller for this compensation wherefore it can only
be done offline or online with at least one step delay in case
of a change in speed or direction.

A model of a robot is always an abstraction of a physical
robot but nevertheless utilizable to generate stable walking
motions. However, as discussed by Urbann et al. [7], it might
require some undesired choices, e.g. a particular step height
or a ZMP that is not only inside the support polygon but also
of special shape. The latter is one approach of this paper for
walking stabilization.

B. Overview

Fig. 1 depicts the discussion of the latter paragraph about
various levels of abstractions. The most simple case of physical
dynamics is in fact ”no dynamics”. Walking algorithms utiliz-
ing static foot trajectories are examples for this category. The
more CoMs are used, the better is the reflection of the reality.
A sophisticated model is the Rigid Body Dynamics (RBD),
e.g. as utilized by the Open Dynamics Engine (ODE)2. Here,
the CoMs of all links are included along with their inertia
matrices and the simulation is able to reflect frictions forces
between objects. Joints in ODE can also be torque-driven,
which enables the realization of PID controllers. This can be

1The Zero Moment Point is the point on the floor where all tipping moments
of the robot are zero. If it resides inside the support polygon, the robot is
considered as stable.

2www.ode.org

behnke
Schreibmaschine
The 10th Workshop on Humanoid Soccer Robots15th IEEE-RAS International Conference on Humanoid Robots, Seoul, Korea, November 2015



utilized by simulations to reduce the gap between RBD and
a real robot as done in Gazebo [8]. However, ODE or any
simulator can not be a replacement for a model in a motion
algorithm.

Between a real robot and RBD is still a big gap, which mo-
tivated Urbann et al. to propose the MoToFlex simulator [9].
We review its features in section II and utilize it to evaluate the
influence of PID controller, worn out gears, slightly flexible
links and the joint motor on the real walk in section III. In this
section we additionally compensate the detected instabilities
with various algorithms. Section IV concludes this work.

II. REVIEW OF MOTOFLEX

MoToFlex [9] is intended to fill the gap between a simula-
tion based on RBD, e.g. the ODE and real robots. As the name
implies, an RBD simulates rigid bodies only. All joints do not
reveal any angle errors as they do not include a motor model or
a PID based controller like the joints of the Nao by Aldebaran
Robotics. MoToFlex therefore realizes the following features
(abbreviations are utilized in the following to indicate if a
feature is activated or not):
• A motor model M with PID controller, limited voltage,

impedance I, resistor and friction,
• Gears G with mass, flexibility and tolerances,
• Flexible bodies F to reflect lightweight links of a robot.
The simulation is optimized by Evolutionary Algorithms to

fit a physical robot. This also leads to an improved simulation
when no additional feature of MoToFlex is utilized, i.e. a basic
ODE simulation is executed. With all features activated it can
be shown in multiple experiments that MoToFlex is able to
reflect various instabilities of a walking robot [9].

III. ANALYSIS AND COMPENSATION OF OSCILLATION

In this section we investigate the difference between a
model consisting of a single CoM and RBD. We present an
algorithm to compensate the error, and are then able to inspect
the deviations caused by motors, PID controllers, gears, and
flexible links.

A. Setup

To generate a walking motion, the ZMP/IP controller as
proposed by Urbann et al. is applied [10], [11], [12], [13].
It utilizes the 3D-LIPM and is therefore representative for
walking motions based on a single CoM abstraction. We
analyze two observations when walking at 20cm/s with a
physical robot: First an oscillation of the trunk during the walk,
and second the actual speed is higher than desired, approx. 25
cm/s. The walk is overall stable in terms of it does not fall
down. However, the oscillation is not intended and should not
occur.

As Fig. 2 depicts, the oscillation of this walk can be
reproduced in MoToFlex with comparable amplitude and same
frequency. Additionally, we can seen both, in simulation and
reality, every second step the amplitude is lower. The same
walk with all additional features of MoToFlex switched off

Fig. 2. Oscillation during a walk straight forward at 20 cm/s. While a
simulation based on RBD (e.g. ODE) reveals no oscillation during the
evaluated walk, MoToFlex reflects the oscillations of the physical robot
in amplitude and frequency. Additionally, every second step the amplitude
is smaller during the walk of a physical robot which is also reflected by
MoToFlex.

Fig. 3. Positions of feet on ground over time. The position is plotted only in
case a ground contact is detected.

(basic ODE simulation) leads to approximately no oscillation.
This is further analyzed in section III-D.

Moreover, the robot walks in MoToFlex 21 cm/s which is
higher than the desired and expected speed of 20 cm/s. We
therefore utilize MoToFlex to find a root cause for the speed
increase of the physical robot in the next section.

B. Coupling of Oscillation and Speed-Up

Fig. 3 illustrates the positions of both feet during one step.
If a foot has contact to the ground, a dot marks its position. As
can be seen, in the double support phase (both dots are drawn)
both feet are slipping backwards. This lowers the actual speed.
In Fig. 4 a dot that marks the distance between both feet is
drawn if and only if both feet have contact to the ground. As

Fig. 4. Distance between feet if both feet have ground contact.



Fig. 5. ZMP deviations between RBD and 3D-LIPM after multiple iterations
of Alg. 1.

can be seen, the distance decreases during the double support
but is higher than the desired distance of 0.1m. Due to this step
size increase the speed of the robot is increased. As this effect
is larger than the speed decrease due to slipping the overall
speed of the robot is increased as mentioned in section III-A.

C. RBD

Algorithm 1 Compensation of abstraction RBD to 3D-LIPM
1: p′ = pr, po = 0
2: for i=1 to n do
3: q = ZMP/IP-Controller(p′); // Execute walking algo-

rithm to retrieve target angles q
4: p = Newton-Euler(q); // Calculate ZMP using RBD

(e.g. Newton-Euler)
5: po = po + pr − p; // Add difference to offset po
6: p′ = pr + po; // Get new desired ZMP by adding offset

to reference
7: end for

First part of the analysis is to evaluate the influence of the
simplification to one CoM on the ZMP. While in theory the
robot walks stable as long as the ZMP does not leave the
support polygon, the combination of various instabilities can
cause a fall down. It is therefore reasonable to improve all
possible sources for ZMP deviations, here the simplification
to a single CoM.

Fig. 6. Simulation of walk at 20 cm/s with various features of MoToFlex
enabled.

We apply the compensation algorithm shown in Alg. 1. It is
an accumulation of the difference between the desired ZMP pr
calculated by 3D-LIPM3 and RBD p. This sum is afterwards
added to the modified ZMP p′ and the walk is recomputed.
This is reiterated until the ZMP according to RBD matches
the desired as depicted in Fig. 5. Afterwards p′ is applied as
new reference ZMP.

D. Simulation

The motors, gears and flexible bodies of MoToFlex cause
the difference of the ZMP between RBD and a physical robot.
As the measurement of the ZMP in simulation is problem-
atic, we continue to analyze the oscillation. Fig. 6 depicts
the oscillation with different features of MoToFlex switched
on or off. The oscillation with all features (M+F+G+I) is
comparable to Fig. 2 and comparable to the simulation of just
M. It can be concluded that the parameters of the simulation
found by the Evolutionary Algorithm are optimized such that
F+G cancels out the effect of I. Without I but with F+G the
phase of the oscillation is shifted about 0.5 s but still high.
As the simulation of F has a low influence as well, M+G
is solely responsible for the oscillation. Moreover, the gains
for G in simulation are near to zero4 and therefore it follows
that almost only the PID controllers are responsible for the
oscillation. Additionally, Fig. 7, 8 and 9 illustrate that higher
desired torques lead to larger deviations in the direction of the
torque. Consequently, PID controllers and the abstraction to
a single CoM are an important cause for internal errors of a
walking robot and are responsible for typical body oscillations
in walking direction. However, it has to be noted that this holds
for the simulation, which is optimized to match the walk of a
physical robot, although this is not a guarantee that the results
are transferable. Nevertheless, while the results are possibly
obvious, a comprehensive analysis is the base for possible
solutions presented in the next section.

E. Compensation on Physical Robot

In this section we present compensation methods compa-
rable to the algorithm 1 but here for a physical robot. All
experiments were done while walking forward only, as the

3The ZMP based on 3D-LIPM is equal to the desired ZMP as the walk is
determined utilizing this abstraction.

4Gains were optimized by Evolutionary Algorithms to match the real walk.



Fig. 7. Target angle of right ankle pitch and the required torque. The deviation
between actual and target angle is coupled to the torque required to achive
the movement.

oscillation is not visible during rotation or a walk sideways.
The results from the previous section gives a strong hint to
the reason for this: with larger step sizes the torque on the
foot joint raises and therewith the angle error leading to an
oscillation of the body. This behavior is not included in the
model resulting in a gap between the model and the physical
robot.

The idea is to minimize the deviations between the sim-
plified model and the more complex system. In contrast to
the previous section, the complex system is the real robot
that reveals the oscillation as shown in Fig 2. As it is
impossible to predict the physical behavior of the real robot,
the compensation must rely on measurements and adapt the
desired ZMP accordingly.

Algorithm 1 performs well in compensation of the abstrac-
tion from RBD to 3D-LIPM. The idea of the algorithm here
is therefore comparably. The sum of the difference between
desired and actual ZMP is added to the desired ZMP of
the next step, see Algorithm 2. A filter with gain α1 is
applied to mitigate bias from the measurements. Afterwards
the difference is calculated and added to the sum. A second
gain α2 is utilized to avoid harsh reactions. After one step
(here 50 time frames5) the sum for the specific time frame is
added to the desired ZMP.

5One time frame has a duration of 10ms.

Fig. 8. Target angle of right knee pitch and the required torque. The deviation
between actual and target angle is coupled to the torque required to achive
the movement.

Algorithm 2 Compensation of measured ZMP deviations with
bias filter

1: Init offset array po[1 . . . T ] and b with 0
2: for i=1 to n do
3: q = ZMP/IP-Controller(p′); // Execute walking algo-

rithm to retrieve target angles q
4: p = Walk(q); // Measure ZMP from walking robot
5: b = α1b+ (1− α1)(pr − p); // Calculate bias b
6: p′ = pr + po[i mod T +1]; // Get new desired ZMP by

adding offset to reference
7: po[i mod T + 1] = α2po[i mod T + 1] + (1− α2)pr −

p+ b; // Add difference to offset po and remove bias
8: end for

Fig. 10 depicts the outcome of this algorithm. The measured
ZMP (actual ZMP) shows large deviations compared to the
original desired ZMP (not depicted) which is a linear function
with positive slope. The compensation (Algorithm 2) is applied
resulting in the shown target ZMP which is calculated as
intended. However, the measured ZMP of each step is similar
to the previous step. We conclude that a modified ZMP
derived from measurements does not appropriately match the
deviations and present in the following a different approach.

Since the dynamics of a periodical oscillation is mainly
supplied from the dynamics of the previous oscillation, it is
sufficient to stop a tilt into one direction. The tilt into the other



Fig. 9. Target angle of right hip pitch and the required torque. The deviation
between actual and target angle is coupled to the torque required to achive
the movement.

Time [frames]
2700 2800 2900 3000 3100 3200

D
is

ta
n
c
e
 [
m

]

-0.1

0

0.1

0.2

0.3

0.4

0.5

Actual ZMP
Target ZMP

Fig. 10. Measured and desired ZMP after modification on a physical robot
to reduce the error of the actual ZMP.

direction should then be canceled as well. Hence, we focus on
the oscillation instead of the measured ZMP and apply two
different offset functions to the desired ZMP: A sawtooth and
a half sine. Fig. 11 depicts the actual ZMP of an unmodified
walk with a linear ZMP function as reference. The form is
comparable to a half sine which is therefore the modifier for
the desired ZMP, resulting in the target ZMP as depicted here.
As a result, the actual ZMP after modification is closer to a
linear function. The sawtooth function is applied analogously.
The frequency of the modifier (half sine and sawtooth) is
coupled to the step duration. The phase of the modifier must
be optimized manually.

Fig. 12 illustrates the results in the frequency domain. The
largest amplitude can be measured at 2 Hz. We therefore
concentrate our optimization to reduce the oscillation at this

Time [frames]
1000 1100 1200 1300 1400 1500

D
is

ta
n
c
e
 [
m

]

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5
Actual ZMP after modification
Target ZMP with modification
Actual ZMP without modification

Fig. 11. Desired ZMP modified by a half sine function with impact on the
measured ZMP.

Frequency [Hz]
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A
m

p
lit

u
d
e

0

0.01

0.02

0.03

0.04 No mod.

half sinus

sawtooth

Fig. 12. Spectrum of the oscillation of a physical robot without and with two
different modifications of the desired ZMP. The relevant peak of the oscillation
is at 2 Hz.

frequency. Both functions (half sine and sawtooth) perform
well, while the half sine shows the best results. As Fig. 13
depicts, the standard deviation of the oscillation is reduced as
well, or in other words, the oscillation is successfully lowered.

Nevertheless, even with compensation a significant oscilla-
tion is not avoidable. Various reasons are possible:
• The form of the compensation function (half sine, saw-

tooth) does not fit exactly the error.
• The amplitude is not matched or varies over time.
• The error is a result of the limited torques of the joints.
In the latter case a compensation this way is impossible

as requesting higher torques will not lead to higher torques,
actually.

IV. CONCLUSION

This paper presents an analysis and compensation of in-
stabilities with internal reasons, primarily caused by model
abstractions. The analysis presents inaccuracies in multiple
steps from a simple model containing only one CoM to
a physical robot. The most problematic elements are the

Fig. 13. Box plot of the oscillation of a physical robot without and with two
different modifications.



abstraction from RBD to a single CoM and additionally PID
controllers. The latter actually create torques without regard
to the desired dynamic that is only known to upper layers of
control.

Possible compensations are presented and compared. The
compensation for the RBD to 3D-LIPM abstraction performs
as expected while the real robot can be stabilized by applying
a sawtooth or half sine function to the desired ZMP.

The compensation based on measurements failed as it only
depends on the measured ZMP. However, both manually
applied functions showed satisfying results. Therefore a future
research topic is the automation of the manual application of
arbitrary functions. A promising approach are neural networks
learning to predict the ZMP based on the measurements. As
neural networks can be applied in linear controller algorithms
like Model Predictive Control, this way the model includes
multiple aspects besides the CoM.

REFERENCES

[1] Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The
3D linear inverted pendulum mode: a simple modeling for a biped
walking pattern generation. In: Intelligent Robots and Systems, 2001.
Proceedings. 2001 IEEE/RSJ International Conference on. Volume 1.
(2001) 239 –246 vol.1

[2] Graf, C., Röfer, T.: A closed-loop 3D-LIPM gait for the RoboCup
Standard Platform League humanoid. In Pagello, E., Zhou, C., Behnke,
S., Menegatti, E., Röfer, T., Stone, P., eds.: Proceedings of the Fifth
Workshop on Humanoid Soccer Robots in conjunction with the 2010
IEEE-RAS International Conference on Humanoid Robots, Nashville,
TN, USA (2010)

[3] Pratt, J.E., Carff, J., Drakunov, S.V., Goswami, A.: Capture point: A step
toward humanoid push recovery. In: Humanoids, IEEE (2006) 200–207

[4] Seven, U., Erbatur, K.: An inverted pendulum based approach to biped
trajectory generation with swing leg dynamics. In: 2007 7th IEEE-RAS
International Conference on Humanoid Robotics. (2007) 44

[5] Buschmann, T., Lohmeier, S., Bachmayer, M., Ulbrich, H., Pfeiffer, F.:
A collocation method for real-time walking pattern generation. In:
Humanoid Robots, 2007 7th IEEE-RAS International Conference on.
(Nov 2007) 1–6

[6] Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi,
K., Hirukawa, H.: Biped walking pattern generation by using preview
control of zero-moment point. In: ICRA, IEEE (2003) 1620–1626

[7] Urbann, O., Schwarz, I., Hofmann, M.: Flexible linear inverted pen-
dulum model for cost-effective biped robots. In: Humanoid Robots
(Humanoids), 2015 15th IEEE-RAS International Conference on. (Nov
2015) to appear

[8] Koenig, N., Howard, A.: Design and use paradigms for gazebo, an
open-source multi-robot simulator. In: Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Confer-
ence on. Volume 3., IEEE (2004) 2149–2154

[9] Urbann, O., Kerner, S., Tasse, S.: Rigid and Soft Body Simulation
Featuring Realistic Walk Behaviour. In: RoboCup 2011: Robot Soccer
World Cup XV Preproceedings, RoboCup Federation (2011)

[10] Czarnetzki, S., Kerner, S., Urbann, O.: Observer-based dynamic walking
control for biped robots. Robotics and Autonomous Systems 57(8)
(2009) 839–845

[11] Czarnetzki, S., Kerner, S., Urbann, O.: Applying dynamic walking
control for biped robots. In: RoboCup 2009: Robot Soccer World Cup
XIII. Springer Berlin Heidelberg (2010) 69–80

[12] Urbann, O., Tasse, S.: Observer based biped walking control, a sensor
fusion approach. Autonomous Robots 35(1) (2013) 37–49

[13] Urbann, O., Hofmann, M.: Modification of foot placement for bal-
ancing using a preview controller based humanoid walking algorithm.
In: Proceedings RoboCup 2014 International Symposium, Eindhoven,
Netherlands (2014)


